/* * Copyright 2008 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.zxing.oned; import com.google.zxing.BinaryBitmap; import com.google.zxing.ChecksumException; import com.google.zxing.DecodeHintType; import com.google.zxing.FormatException; import com.google.zxing.NotFoundException; import com.google.zxing.Reader; import com.google.zxing.ReaderException; import com.google.zxing.Result; import com.google.zxing.ResultMetadataType; import com.google.zxing.ResultPoint; import com.google.zxing.common.BitArray; import java.util.Arrays; import java.util.EnumMap; import java.util.Map; /** * Encapsulates functionality and implementation that is common to all families * of one-dimensional barcodes. * * @author dswitkin@google.com (Daniel Switkin) * @author Sean Owen */ public abstract class OneDReader implements Reader { protected static final int INTEGER_MATH_SHIFT = 8; protected static final int PATTERN_MATCH_RESULT_SCALE_FACTOR = 1 << INTEGER_MATH_SHIFT; @Override public Result decode(BinaryBitmap image) throws NotFoundException, FormatException { return decode(image, null); } // Note that we don't try rotation without the try harder flag, even if rotation was supported. @Override public Result decode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException, FormatException { try { return doDecode(image, hints); } catch (NotFoundException nfe) { boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); if (tryHarder && image.isRotateSupported()) { BinaryBitmap rotatedImage = image.rotateCounterClockwise(); Result result = doDecode(rotatedImage, hints); // Record that we found it rotated 90 degrees CCW / 270 degrees CW Map<ResultMetadataType,?> metadata = result.getResultMetadata(); int orientation = 270; if (metadata != null && metadata.containsKey(ResultMetadataType.ORIENTATION)) { // But if we found it reversed in doDecode(), add in that result here: orientation = (orientation + (Integer) metadata.get(ResultMetadataType.ORIENTATION)) % 360; } result.putMetadata(ResultMetadataType.ORIENTATION, orientation); // Update result points ResultPoint[] points = result.getResultPoints(); if (points != null) { int height = rotatedImage.getHeight(); for (int i = 0; i < points.length; i++) { points[i] = new ResultPoint(height - points[i].getY() - 1, points[i].getX()); } } return result; } else { throw nfe; } } } @Override public void reset() { // do nothing } /** * We're going to examine rows from the middle outward, searching alternately above and below the * middle, and farther out each time. rowStep is the number of rows between each successive * attempt above and below the middle. So we'd scan row middle, then middle - rowStep, then * middle + rowStep, then middle - (2 * rowStep), etc. * rowStep is bigger as the image is taller, but is always at least 1. We've somewhat arbitrarily * decided that moving up and down by about 1/16 of the image is pretty good; we try more of the * image if "trying harder". * * @param image The image to decode * @param hints Any hints that were requested * @return The contents of the decoded barcode * @throws NotFoundException Any spontaneous errors which occur */ private Result doDecode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException { int width = image.getWidth(); int height = image.getHeight(); BitArray row = new BitArray(width); int middle = height >> 1; boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int rowStep = Math.max(1, height >> (tryHarder ? 8 : 5)); int maxLines; if (tryHarder) { maxLines = height; // Look at the whole image, not just the center } else { maxLines = 15; // 15 rows spaced 1/32 apart is roughly the middle half of the image } for (int x = 0; x < maxLines; x++) { // Scanning from the middle out. Determine which row we're looking at next: int rowStepsAboveOrBelow = (x + 1) >> 1; boolean isAbove = (x & 0x01) == 0; // i.e. is x even? int rowNumber = middle + rowStep * (isAbove ? rowStepsAboveOrBelow : -rowStepsAboveOrBelow); if (rowNumber < 0 || rowNumber >= height) { // Oops, if we run off the top or bottom, stop break; } // Estimate black point for this row and load it: try { row = image.getBlackRow(rowNumber, row); } catch (NotFoundException nfe) { continue; } // While we have the image data in a BitArray, it's fairly cheap to reverse it in place to // handle decoding upside down barcodes. for (int attempt = 0; attempt < 2; attempt++) { if (attempt == 1) { // trying again? row.reverse(); // reverse the row and continue // This means we will only ever draw result points *once* in the life of this method // since we want to avoid drawing the wrong points after flipping the row, and, // don't want to clutter with noise from every single row scan -- just the scans // that start on the center line. if (hints != null && hints.containsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { Map<DecodeHintType,Object> newHints = new EnumMap<DecodeHintType,Object>(DecodeHintType.class); newHints.putAll(hints); newHints.remove(DecodeHintType.NEED_RESULT_POINT_CALLBACK); hints = newHints; } } try { // Look for a barcode Result result = decodeRow(rowNumber, row, hints); // We found our barcode if (attempt == 1) { // But it was upside down, so note that result.putMetadata(ResultMetadataType.ORIENTATION, 180); // And remember to flip the result points horizontally. ResultPoint[] points = result.getResultPoints(); if (points != null) { points[0] = new ResultPoint(width - points[0].getX() - 1, points[0].getY()); points[1] = new ResultPoint(width - points[1].getX() - 1, points[1].getY()); } } return result; } catch (ReaderException re) { // continue -- just couldn't decode this row } } } throw NotFoundException.getNotFoundInstance(); } /** * Records the size of successive runs of white and black pixels in a row, starting at a given point. * The values are recorded in the given array, and the number of runs recorded is equal to the size * of the array. If the row starts on a white pixel at the given start point, then the first count * recorded is the run of white pixels starting from that point; likewise it is the count of a run * of black pixels if the row begin on a black pixels at that point. * * @param row row to count from * @param start offset into row to start at * @param counters array into which to record counts * @throws NotFoundException if counters cannot be filled entirely from row before running out * of pixels */ protected static void recordPattern(BitArray row, int start, int[] counters) throws NotFoundException { int numCounters = counters.length; Arrays.fill(counters, 0, numCounters, 0); int end = row.getSize(); if (start >= end) { throw NotFoundException.getNotFoundInstance(); } boolean isWhite = !row.get(start); int counterPosition = 0; int i = start; while (i < end) { if (row.get(i) ^ isWhite) { // that is, exactly one is true counters[counterPosition]++; } else { counterPosition++; if (counterPosition == numCounters) { break; } else { counters[counterPosition] = 1; isWhite = !isWhite; } } i++; } // If we read fully the last section of pixels and filled up our counters -- or filled // the last counter but ran off the side of the image, OK. Otherwise, a problem. if (!(counterPosition == numCounters || (counterPosition == numCounters - 1 && i == end))) { throw NotFoundException.getNotFoundInstance(); } } protected static void recordPatternInReverse(BitArray row, int start, int[] counters) throws NotFoundException { // This could be more efficient I guess int numTransitionsLeft = counters.length; boolean last = row.get(start); while (start > 0 && numTransitionsLeft >= 0) { if (row.get(--start) != last) { numTransitionsLeft--; last = !last; } } if (numTransitionsLeft >= 0) { throw NotFoundException.getNotFoundInstance(); } recordPattern(row, start + 1, counters); } /** * Determines how closely a set of observed counts of runs of black/white values matches a given * target pattern. This is reported as the ratio of the total variance from the expected pattern * proportions across all pattern elements, to the length of the pattern. * * @param counters observed counters * @param pattern expected pattern * @param maxIndividualVariance The most any counter can differ before we give up * @return ratio of total variance between counters and pattern compared to total pattern size, * where the ratio has been multiplied by 256. So, 0 means no variance (perfect match); 256 means * the total variance between counters and patterns equals the pattern length, higher values mean * even more variance */ protected static int patternMatchVariance(int[] counters, int[] pattern, int maxIndividualVariance) { int numCounters = counters.length; int total = 0; int patternLength = 0; for (int i = 0; i < numCounters; i++) { total += counters[i]; patternLength += pattern[i]; } if (total < patternLength) { // If we don't even have one pixel per unit of bar width, assume this is too small // to reliably match, so fail: return Integer.MAX_VALUE; } // We're going to fake floating-point math in integers. We just need to use more bits. // Scale up patternLength so that intermediate values below like scaledCounter will have // more "significant digits" int unitBarWidth = (total << INTEGER_MATH_SHIFT) / patternLength; maxIndividualVariance = (maxIndividualVariance * unitBarWidth) >> INTEGER_MATH_SHIFT; int totalVariance = 0; for (int x = 0; x < numCounters; x++) { int counter = counters[x] << INTEGER_MATH_SHIFT; int scaledPattern = pattern[x] * unitBarWidth; int variance = counter > scaledPattern ? counter - scaledPattern : scaledPattern - counter; if (variance > maxIndividualVariance) { return Integer.MAX_VALUE; } totalVariance += variance; } return totalVariance / total; } /** * <p>Attempts to decode a one-dimensional barcode format given a single row of * an image.</p> * * @param rowNumber row number from top of the row * @param row the black/white pixel data of the row * @param hints decode hints * @return {@link Result} containing encoded string and start/end of barcode * @throws NotFoundException if an error occurs or barcode cannot be found */ public abstract Result decodeRow(int rowNumber, BitArray row, Map<DecodeHintType,?> hints) throws NotFoundException, ChecksumException, FormatException; }