/* * Copyright 2009 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.zxing.multi.qrcode.detector; import com.google.zxing.DecodeHintType; import com.google.zxing.NotFoundException; import com.google.zxing.ResultPoint; import com.google.zxing.ResultPointCallback; import com.google.zxing.common.BitMatrix; import com.google.zxing.qrcode.detector.FinderPattern; import com.google.zxing.qrcode.detector.FinderPatternFinder; import com.google.zxing.qrcode.detector.FinderPatternInfo; import java.io.Serializable; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.List; import java.util.Map; /** * <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square * markers at three corners of a QR Code.</p> * * <p>This class is thread-safe but not reentrant. Each thread must allocate its own object. * * <p>In contrast to {@link FinderPatternFinder}, this class will return an array of all possible * QR code locations in the image.</p> * * <p>Use the TRY_HARDER hint to ask for a more thorough detection.</p> * * @author Sean Owen * @author Hannes Erven */ final class MultiFinderPatternFinder extends FinderPatternFinder { private static final FinderPatternInfo[] EMPTY_RESULT_ARRAY = new FinderPatternInfo[0]; // TODO MIN_MODULE_COUNT and MAX_MODULE_COUNT would be great hints to ask the user for // since it limits the number of regions to decode // max. legal count of modules per QR code edge (177) private static final float MAX_MODULE_COUNT_PER_EDGE = 180; // min. legal count per modules per QR code edge (11) private static final float MIN_MODULE_COUNT_PER_EDGE = 9; /** * More or less arbitrary cutoff point for determining if two finder patterns might belong * to the same code if they differ less than DIFF_MODSIZE_CUTOFF_PERCENT percent in their * estimated modules sizes. */ private static final float DIFF_MODSIZE_CUTOFF_PERCENT = 0.05f; /** * More or less arbitrary cutoff point for determining if two finder patterns might belong * to the same code if they differ less than DIFF_MODSIZE_CUTOFF pixels/module in their * estimated modules sizes. */ private static final float DIFF_MODSIZE_CUTOFF = 0.5f; /** * A comparator that orders FinderPatterns by their estimated module size. */ private static final class ModuleSizeComparator implements Comparator<FinderPattern>, Serializable { @Override public int compare(FinderPattern center1, FinderPattern center2) { float value = center2.getEstimatedModuleSize() - center1.getEstimatedModuleSize(); return value < 0.0 ? -1 : value > 0.0 ? 1 : 0; } } /** * <p>Creates a finder that will search the image for three finder patterns.</p> * * @param image image to search */ MultiFinderPatternFinder(BitMatrix image) { super(image); } MultiFinderPatternFinder(BitMatrix image, ResultPointCallback resultPointCallback) { super(image, resultPointCallback); } /** * @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are * those that have been detected at least {@link #CENTER_QUORUM} times, and whose module * size differs from the average among those patterns the least * @throws NotFoundException if 3 such finder patterns do not exist */ private FinderPattern[][] selectMutipleBestPatterns() throws NotFoundException { List<FinderPattern> possibleCenters = getPossibleCenters(); int size = possibleCenters.size(); if (size < 3) { // Couldn't find enough finder patterns throw NotFoundException.getNotFoundInstance(); } /* * Begin HE modifications to safely detect multiple codes of equal size */ if (size == 3) { return new FinderPattern[][]{ new FinderPattern[]{ possibleCenters.get(0), possibleCenters.get(1), possibleCenters.get(2) } }; } // Sort by estimated module size to speed up the upcoming checks Collections.sort(possibleCenters, new ModuleSizeComparator()); /* * Now lets start: build a list of tuples of three finder locations that * - feature similar module sizes * - are placed in a distance so the estimated module count is within the QR specification * - have similar distance between upper left/right and left top/bottom finder patterns * - form a triangle with 90° angle (checked by comparing top right/bottom left distance * with pythagoras) * * Note: we allow each point to be used for more than one code region: this might seem * counterintuitive at first, but the performance penalty is not that big. At this point, * we cannot make a good quality decision whether the three finders actually represent * a QR code, or are just by chance layouted so it looks like there might be a QR code there. * So, if the layout seems right, lets have the decoder try to decode. */ List<FinderPattern[]> results = new ArrayList<FinderPattern[]>(); // holder for the results for (int i1 = 0; i1 < (size - 2); i1++) { FinderPattern p1 = possibleCenters.get(i1); if (p1 == null) { continue; } for (int i2 = i1 + 1; i2 < (size - 1); i2++) { FinderPattern p2 = possibleCenters.get(i2); if (p2 == null) { continue; } // Compare the expected module sizes; if they are really off, skip float vModSize12 = (p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()) / Math.min(p1.getEstimatedModuleSize(), p2.getEstimatedModuleSize()); float vModSize12A = Math.abs(p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()); if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } for (int i3 = i2 + 1; i3 < size; i3++) { FinderPattern p3 = possibleCenters.get(i3); if (p3 == null) { continue; } // Compare the expected module sizes; if they are really off, skip float vModSize23 = (p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()) / Math.min(p2.getEstimatedModuleSize(), p3.getEstimatedModuleSize()); float vModSize23A = Math.abs(p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()); if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } FinderPattern[] test = {p1, p2, p3}; ResultPoint.orderBestPatterns(test); // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal FinderPatternInfo info = new FinderPatternInfo(test); float dA = ResultPoint.distance(info.getTopLeft(), info.getBottomLeft()); float dC = ResultPoint.distance(info.getTopRight(), info.getBottomLeft()); float dB = ResultPoint.distance(info.getTopLeft(), info.getTopRight()); // Check the sizes float estimatedModuleCount = (dA + dB) / (p1.getEstimatedModuleSize() * 2.0f); if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) { continue; } // Calculate the difference of the edge lengths in percent float vABBC = Math.abs((dA - dB) / Math.min(dA, dB)); if (vABBC >= 0.1f) { continue; } // Calculate the diagonal length by assuming a 90° angle at topleft float dCpy = (float) Math.sqrt(dA * dA + dB * dB); // Compare to the real distance in % float vPyC = Math.abs((dC - dCpy) / Math.min(dC, dCpy)); if (vPyC >= 0.1f) { continue; } // All tests passed! results.add(test); } // end iterate p3 } // end iterate p2 } // end iterate p1 if (!results.isEmpty()) { return results.toArray(new FinderPattern[results.size()][]); } // Nothing found! throw NotFoundException.getNotFoundInstance(); } public FinderPatternInfo[] findMulti(Map<DecodeHintType,?> hints) throws NotFoundException { boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); BitMatrix image = getImage(); int maxI = image.getHeight(); int maxJ = image.getWidth(); // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. int iSkip = (int) (maxI / (MAX_MODULES * 4.0f) * 3); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } int[] stateCount = new int[5]; for (int i = iSkip - 1; i < maxI; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; int currentState = 0; for (int j = 0; j < maxJ; j++) { if (image.get(j, i)) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (foundPatternCross(stateCount)) { // Yes boolean confirmed = handlePossibleCenter(stateCount, i, j); if (!confirmed) { do { // Advance to next black pixel j++; } while (j < maxJ && !image.get(j, i)); j--; // back up to that last white pixel } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } // for j=... if (foundPatternCross(stateCount)) { handlePossibleCenter(stateCount, i, maxJ); } // end if foundPatternCross } // for i=iSkip-1 ... FinderPattern[][] patternInfo = selectMutipleBestPatterns(); List<FinderPatternInfo> result = new ArrayList<FinderPatternInfo>(); for (FinderPattern[] pattern : patternInfo) { ResultPoint.orderBestPatterns(pattern); result.add(new FinderPatternInfo(pattern)); } if (result.isEmpty()) { return EMPTY_RESULT_ARRAY; } else { return result.toArray(new FinderPatternInfo[result.size()]); } } }