/* * Copyright 2009 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.zxing.common; import com.google.zxing.Binarizer; import com.google.zxing.LuminanceSource; import com.google.zxing.NotFoundException; /** * This Binarizer implementation uses the old ZXing global histogram approach. It is suitable * for low-end mobile devices which don't have enough CPU or memory to use a local thresholding * algorithm. However, because it picks a global black point, it cannot handle difficult shadows * and gradients. * * Faster mobile devices and all desktop applications should probably use HybridBinarizer instead. * * @author dswitkin@google.com (Daniel Switkin) * @author Sean Owen */ public class GlobalHistogramBinarizer extends Binarizer { private static final int LUMINANCE_BITS = 5; private static final int LUMINANCE_SHIFT = 8 - LUMINANCE_BITS; private static final int LUMINANCE_BUCKETS = 1 << LUMINANCE_BITS; private static final byte[] EMPTY = new byte[0]; private byte[] luminances; private final int[] buckets; public GlobalHistogramBinarizer(LuminanceSource source) { super(source); luminances = EMPTY; buckets = new int[LUMINANCE_BUCKETS]; } // Applies simple sharpening to the row data to improve performance of the 1D Readers. @Override public BitArray getBlackRow(int y, BitArray row) throws NotFoundException { LuminanceSource source = getLuminanceSource(); int width = source.getWidth(); if (row == null || row.getSize() < width) { row = new BitArray(width); } else { row.clear(); } initArrays(width); byte[] localLuminances = source.getRow(y, luminances); int[] localBuckets = buckets; for (int x = 0; x < width; x++) { int pixel = localLuminances[x] & 0xff; localBuckets[pixel >> LUMINANCE_SHIFT]++; } int blackPoint = estimateBlackPoint(localBuckets); int left = localLuminances[0] & 0xff; int center = localLuminances[1] & 0xff; for (int x = 1; x < width - 1; x++) { int right = localLuminances[x + 1] & 0xff; // A simple -1 4 -1 box filter with a weight of 2. int luminance = ((center << 2) - left - right) >> 1; if (luminance < blackPoint) { row.set(x); } left = center; center = right; } return row; } // Does not sharpen the data, as this call is intended to only be used by 2D Readers. @Override public BitMatrix getBlackMatrix() throws NotFoundException { LuminanceSource source = getLuminanceSource(); int width = source.getWidth(); int height = source.getHeight(); BitMatrix matrix = new BitMatrix(width, height); // Quickly calculates the histogram by sampling four rows from the image. This proved to be // more robust on the blackbox tests than sampling a diagonal as we used to do. initArrays(width); int[] localBuckets = buckets; for (int y = 1; y < 5; y++) { int row = height * y / 5; byte[] localLuminances = source.getRow(row, luminances); int right = (width << 2) / 5; for (int x = width / 5; x < right; x++) { int pixel = localLuminances[x] & 0xff; localBuckets[pixel >> LUMINANCE_SHIFT]++; } } int blackPoint = estimateBlackPoint(localBuckets); // We delay reading the entire image luminance until the black point estimation succeeds. // Although we end up reading four rows twice, it is consistent with our motto of // "fail quickly" which is necessary for continuous scanning. byte[] localLuminances = source.getMatrix(); for (int y = 0; y < height; y++) { int offset = y * width; for (int x = 0; x< width; x++) { int pixel = localLuminances[offset + x] & 0xff; if (pixel < blackPoint) { matrix.set(x, y); } } } return matrix; } @Override public Binarizer createBinarizer(LuminanceSource source) { return new GlobalHistogramBinarizer(source); } private void initArrays(int luminanceSize) { if (luminances.length < luminanceSize) { luminances = new byte[luminanceSize]; } for (int x = 0; x < LUMINANCE_BUCKETS; x++) { buckets[x] = 0; } } private static int estimateBlackPoint(int[] buckets) throws NotFoundException { // Find the tallest peak in the histogram. int numBuckets = buckets.length; int maxBucketCount = 0; int firstPeak = 0; int firstPeakSize = 0; for (int x = 0; x < numBuckets; x++) { if (buckets[x] > firstPeakSize) { firstPeak = x; firstPeakSize = buckets[x]; } if (buckets[x] > maxBucketCount) { maxBucketCount = buckets[x]; } } // Find the second-tallest peak which is somewhat far from the tallest peak. int secondPeak = 0; int secondPeakScore = 0; for (int x = 0; x < numBuckets; x++) { int distanceToBiggest = x - firstPeak; // Encourage more distant second peaks by multiplying by square of distance. int score = buckets[x] * distanceToBiggest * distanceToBiggest; if (score > secondPeakScore) { secondPeak = x; secondPeakScore = score; } } // Make sure firstPeak corresponds to the black peak. if (firstPeak > secondPeak) { int temp = firstPeak; firstPeak = secondPeak; secondPeak = temp; } // If there is too little contrast in the image to pick a meaningful black point, throw rather // than waste time trying to decode the image, and risk false positives. if (secondPeak - firstPeak <= numBuckets >> 4) { throw NotFoundException.getNotFoundInstance(); } // Find a valley between them that is low and closer to the white peak. int bestValley = secondPeak - 1; int bestValleyScore = -1; for (int x = secondPeak - 1; x > firstPeak; x--) { int fromFirst = x - firstPeak; int score = fromFirst * fromFirst * (secondPeak - x) * (maxBucketCount - buckets[x]); if (score > bestValleyScore) { bestValley = x; bestValleyScore = score; } } return bestValley << LUMINANCE_SHIFT; } }