package gnu.crypto.mode; // ---------------------------------------------------------------------------- // $Id: ICM.java,v 1.7 2005/10/06 04:24:17 rsdio Exp $ // // Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc. // // This file is part of GNU Crypto. // // GNU Crypto is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // GNU Crypto is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; see the file COPYING. If not, write to the // // Free Software Foundation Inc., // 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301 // USA // // Linking this library statically or dynamically with other modules is // making a combined work based on this library. Thus, the terms and // conditions of the GNU General Public License cover the whole // combination. // // As a special exception, the copyright holders of this library give // you permission to link this library with independent modules to // produce an executable, regardless of the license terms of these // independent modules, and to copy and distribute the resulting // executable under terms of your choice, provided that you also meet, // for each linked independent module, the terms and conditions of the // license of that module. An independent module is a module which is // not derived from or based on this library. If you modify this // library, you may extend this exception to your version of the // library, but you are not obligated to do so. If you do not wish to // do so, delete this exception statement from your version. // ---------------------------------------------------------------------------- import gnu.crypto.Registry; import gnu.crypto.cipher.IBlockCipher; import java.math.BigInteger; /** * <p>An implementation of <i>David McGrew</i> Integer Counter Mode (ICM) as an * {@link IMode}.</p> * * <p>ICM is a way to define a pseudorandom keystream generator using a block * cipher. The keystream can be used for additive encryption, key derivation, * or any other application requiring pseudorandom data. In the case of this * class, it is used as additive encryption, XOR-ing the keystream with the * input text --for both encryption and decryption.</p> * * <p>In ICM, the keystream is logically broken into segments. Each segment is * identified with a segment index, and the segments have equal lengths. This * segmentation makes ICM especially appropriate for securing packet-based * protocols. ICM also allows a variety of configurations based, among other * things, on two parameters: the <i>block index length</i> and the * <i>segment index length</i>. A constraint on those two values exists: The sum * of <i>segment index length</i> and <i>block index length</i> <b>must not</b> * half the <i>block size</i> of the underlying cipher. This requirement protects * the ICM keystream generator from potentially failing to be pseudorandom.</p> * * <p>For simplicity, this implementation, fixes these two values to the * following:</p> * * <ul> * <li>block index length: is half the underlying cipher block size, and</li> * <li>segment index length: is zero.</li> * </ul> * * <p>For a 128-bit block cipher, the above values imply a maximum keystream * length of 295,147,905,179,352,825,856 octets, since in ICM, each segment must * not exceed the value <code>(256 ^ <i>block index length</i>) * <i>block length</i></code> * octets.</p> * * <p>Finally, for this implementation of the ICM, the IV placeholder will be * used to pass the value of the <i>Offset</i> in the keystream segment.</p> * * <p>References:</p> * * <ol> * <li><a href="http://www.ietf.org/internet-drafts/draft-mcgrew-saag-icm-00.txt"> * Integer Counter Mode</a>, David A. McGrew.</li> * </ol> * * @version $Revision: 1.7 $ */ public class ICM extends BaseMode implements Cloneable { // Constants and variables // ------------------------------------------------------------------------- /** The integer value 256 as a BigInteger. */ private static final BigInteger TWO_FIFTY_SIX = new BigInteger("256"); /** Maximum number of blocks per segment. */ private BigInteger maxBlocksPerSegment; /** A work constant. */ private BigInteger counterRange; /** The initial counter for a given keystream segment. */ private BigInteger C0; /** The index of the next block for a given keystream segment. */ private BigInteger blockNdx; // Constructor(s) // ------------------------------------------------------------------------- /** * <p>Trivial package-private constructor for use by the Factory class.</p> * * @param underlyingCipher the underlying cipher implementation. * @param cipherBlockSize the underlying cipher block size to use. */ ICM(IBlockCipher underlyingCipher, int cipherBlockSize) { super(Registry.ICM_MODE, underlyingCipher, cipherBlockSize); } /** * <p>Private constructor for cloning purposes.<p> * * @param that the instance to clone. */ private ICM(ICM that) { this((IBlockCipher) that.cipher.clone(), that.cipherBlockSize); } // Class methods // ------------------------------------------------------------------------- // Cloneable interface implementation // ------------------------------------------------------------------------- public Object clone() { return new ICM(this); } // Implementation of abstract methods in BaseMode // ------------------------------------------------------------------------- public void setup() { if (modeBlockSize != cipherBlockSize) { throw new IllegalArgumentException(); } counterRange = TWO_FIFTY_SIX.pow(cipherBlockSize); maxBlocksPerSegment = TWO_FIFTY_SIX.pow(cipherBlockSize / 2); BigInteger r = new BigInteger(1, iv); C0 = maxBlocksPerSegment.add(r).modPow(BigInteger.ONE, counterRange); blockNdx = BigInteger.ZERO; } public void teardown() { counterRange = null; maxBlocksPerSegment = null; C0 = null; blockNdx = null; } public void encryptBlock(byte[] in, int i, byte[] out, int o) { icm(in, i, out, o); } public void decryptBlock(byte[] in, int i, byte[] out, int o) { icm(in, i, out, o); } // Instance methods // ------------------------------------------------------------------------- private void icm(byte[] in, int inOffset, byte[] out, int outOffset) { if (blockNdx.compareTo(maxBlocksPerSegment) >= 0) throw new RuntimeException("Maximum blocks for segment reached"); // encrypt the counter for the current blockNdx // C[i] = (C[0] + i) modulo (256^BLOCK_LENGTH). BigInteger Ci = C0.add(blockNdx).modPow(BigInteger.ONE, counterRange); byte[] result = Ci.toByteArray(); int limit = result.length; // if (limit < cipherBlockSize) { // byte[] data = new byte[cipherBlockSize]; // System.arraycopy(result, 0, data, cipherBlockSize-limit, limit); // result = data; // } else if (limit > cipherBlockSize) { // byte[] data = new byte[cipherBlockSize]; // System.arraycopy(result, limit-cipherBlockSize, data, 0, cipherBlockSize); // result = data; // } // // cipher.encryptBlock(result, 0, result, 0); // blockNdx = blockNdx.add(BigInteger.ONE); // increment blockNdx // for (int i = 0; i < modeBlockSize; ) { // xor result with input block // out[outOffset++] = (byte)(in[inOffset++] ^ result[i++]); // } int ndx = 0; if (limit < cipherBlockSize) { byte[] data = new byte[cipherBlockSize]; System.arraycopy(result, 0, data, cipherBlockSize-limit, limit); result = data; } else if (limit > cipherBlockSize) { ndx = limit-cipherBlockSize; } cipher.encryptBlock(result, ndx, result, ndx); blockNdx = blockNdx.add(BigInteger.ONE); // increment blockNdx for (int i = 0; i < modeBlockSize; i++) { // xor result with input block out[outOffset++] = (byte)(in[inOffset++] ^ result[ndx++]); } } }