package gnu.crypto.cipher; // ---------------------------------------------------------------------------- // $Id: Khazad.java,v 1.10 2005/10/06 04:24:14 rsdio Exp $ // // Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc. // // This file is part of GNU Crypto. // // GNU Crypto is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // GNU Crypto is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; see the file COPYING. If not, write to the // // Free Software Foundation Inc., // 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301 // USA // // Linking this library statically or dynamically with other modules is // making a combined work based on this library. Thus, the terms and // conditions of the GNU General Public License cover the whole // combination. // // As a special exception, the copyright holders of this library give // you permission to link this library with independent modules to // produce an executable, regardless of the license terms of these // independent modules, and to copy and distribute the resulting // executable under terms of your choice, provided that you also meet, // for each linked independent module, the terms and conditions of the // license of that module. An independent module is a module which is // not derived from or based on this library. If you modify this // library, you may extend this exception to your version of the // library, but you are not obligated to do so. If you do not wish to // do so, delete this exception statement from your version. // ---------------------------------------------------------------------------- import gnu.crypto.Registry; import gnu.crypto.util.Util; //import java.io.PrintWriter; import java.security.InvalidKeyException; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; /** * <p>Khazad is a 64-bit (legacy-level) block cipher that accepts a 128-bit key. * The cipher is a uniform substitution-permutation network whose inverse only * differs from the forward operation in the key schedule. The overall cipher * design follows the Wide Trail strategy, favours component reuse, and permits * a wide variety of implementation trade-offs.</p> * * <p>References:</p> * * <ol> * <li><a href="http://planeta.terra.com.br/informatica/paulobarreto/KhazadPage.html">The * Khazad Block Cipher</a>.<br> * <a href="mailto:paulo.barreto@terra.com.br">Paulo S.L.M. Barreto</a> and * <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li> * </ol> * * @version $Revision: 1.10 $ */ public final class Khazad extends BaseCipher { // Debugging methods and variables // ------------------------------------------------------------------------- // private static final String NAME = "khazad"; private static final boolean DEBUG = false; private static final int debuglevel = 9; // private static final PrintWriter err = new PrintWriter(System.out, true); // private static void debug(String s) { // err.println(">>> "+NAME+": "+s); // } // Constants and variables // ------------------------------------------------------------------------- private static final int DEFAULT_BLOCK_SIZE = 8; // in bytes private static final int DEFAULT_KEY_SIZE = 16; // in bytes private static final int R = 8; // standard number of rounds; para. 3.7 private static final String Sd = // p. 20 [KHAZAD] "\uBA54\u2F74\u53D3\uD24D\u50AC\u8DBF\u7052\u9A4C"+ "\uEAD5\u97D1\u3351\u5BA6\uDE48\uA899\uDB32\uB7FC"+ "\uE39E\u919B\uE2BB\u416E\uA5CB\u6B95\uA1F3\uB102"+ "\uCCC4\u1D14\uC363\uDA5D\u5FDC\u7DCD\u7F5A\u6C5C"+ "\uF726\uFFED\uE89D\u6F8E\u19A0\uF089\u0F07\uAFFB"+ "\u0815\u0D04\u0164\uDF76\u79DD\u3D16\u3F37\u6D38"+ "\uB973\uE935\u5571\u7B8C\u7288\uF62A\u3E5E\u2746"+ "\u0C65\u6861\u03C1\u57D6\uD958\uD866\uD73A\uC83C"+ "\uFA96\uA798\uECB8\uC7AE\u694B\uABA9\u670A\u47F2"+ "\uB522\uE5EE\uBE2B\u8112\u831B\u0E23\uF545\u21CE"+ "\u492C\uF9E6\uB628\u1782\u1A8B\uFE8A\u09C9\u874E"+ "\uE12E\uE4E0\uEB90\uA41E\u8560\u0025\uF4F1\u940B"+ "\uE775\uEF34\u31D4\uD086\u7EAD\uFD29\u303B\u9FF8"+ "\uC613\u0605\uC511\u777C\u7A78\u361C\u3959\u1856"+ "\uB3B0\u2420\uB292\uA3C0\u4462\u10B4\u8443\u93C2"+ "\u4ABD\u8F2D\uBC9C\u6A40\uCFA2\u804F\u1FCA\uAA42"; private static final byte[] S = new byte[256]; private static final int[] T0 = new int[256]; private static final int[] T1 = new int[256]; private static final int[] T2 = new int[256]; private static final int[] T3 = new int[256]; private static final int[] T4 = new int[256]; private static final int[] T5 = new int[256]; private static final int[] T6 = new int[256]; private static final int[] T7 = new int[256]; private static final int[][] rc = new int[R + 1][2]; // round constants /** * KAT vector (from ecb_vk): * I=120 * KEY=00000000000000000000000000000100 * CT=A0C86A1BBE2CBF4C */ private static final byte[] KAT_KEY = Util.toBytesFromString("00000000000000000000000000000100"); private static final byte[] KAT_CT = Util.toBytesFromString("A0C86A1BBE2CBF4C"); /** caches the result of the correctness test, once executed. */ private static Boolean valid; // Static code - to intialise lookup tables -------------------------------- static { long time = System.currentTimeMillis(); long ROOT = 0x11d; // para. 2.1 [KHAZAD] int i, j; int s, s2, s3, s4, s5, s6, s7, s8, sb; char c; for (i = 0; i < 256; i++) { c = Sd.charAt(i >>> 1); s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFF; S[i] = (byte) s; s2 = s << 1; if (s2 > 0xFF) s2 ^= ROOT; s3 = s2 ^ s; s4 = s2 << 1; if (s4 > 0xFF) s4 ^= ROOT; s5 = s4 ^ s; s6 = s4 ^ s2; s7 = s6 ^ s; s8 = s4 << 1; if (s8 > 0xFF) s8 ^= ROOT; sb = s8 ^ s2 ^ s; T0[i] = s << 24 | s3 << 16 | s4 << 8 | s5; T1[i] = s3 << 24 | s << 16 | s5 << 8 | s4; T2[i] = s4 << 24 | s5 << 16 | s << 8 | s3; T3[i] = s5 << 24 | s4 << 16 | s3 << 8 | s ; T4[i] = s6 << 24 | s8 << 16 | sb << 8 | s7; T5[i] = s8 << 24 | s6 << 16 | s7 << 8 | sb; T6[i] = sb << 24 | s7 << 16 | s6 << 8 | s8; T7[i] = s7 << 24 | sb << 16 | s8 << 8 | s6; } for (i = 0, j = 0; i < R+1; i++) { // compute round constant rc[i][0] = S[j++] << 24 | (S[j++] & 0xFF) << 16 | (S[j++] & 0xFF) << 8 | (S[j++] & 0xFF); rc[i][1] = S[j++] << 24 | (S[j++] & 0xFF) << 16 | (S[j++] & 0xFF) << 8 | (S[j++] & 0xFF); } time = System.currentTimeMillis() - time; if (DEBUG && debuglevel > 8) { System.out.println("=========="); System.out.println(); System.out.println("Static data"); System.out.println(); System.out.println(); System.out.println("T0[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(T0[i*4+j])+", "); System.out.println(); } System.out.println(); System.out.println("T1[]:"); for(i = 0; i < 64; i++) { for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(T1[i*4+j])+", "); System.out.println(); } System.out.println(); System.out.println("T2[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(T2[i*4+j])+", "); System.out.println(); } System.out.println(); System.out.println("T3[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(T3[i*4+j])+", "); System.out.println(); } System.out.println(); System.out.println("T4[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(T4[i*4+j])+", "); System.out.println(); } System.out.println(); System.out.println("T5[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(T5[i*4+j])+", "); System.out.println(); } System.out.println(); System.out.println("T6[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(T6[i*4+j])+", "); System.out.println(); } System.out.println(); System.out.println("T7[]:"); for (i = 0; i < 64; i++) { for (j = 0; j < 4; j++) System.out.print("0x"+Util.toString(T7[i*4+j])+", "); System.out.println(); } System.out.println(); System.out.println("rc[]:"); for (i = 0; i < R+1; i++) System.out.print("0x"+Util.toString(rc[i][0])+Util.toString(rc[i][1])); System.out.println(); System.out.println("Total initialization time: "+time+" ms."); System.out.println(); } } // Constructor(s) // ------------------------------------------------------------------------- /** Trivial 0-arguments constructor. */ public Khazad() { super(Registry.KHAZAD_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE); } // Class methods // ------------------------------------------------------------------------- private static void khazad(byte[] in, int i, byte[] out, int j, int[][] K) { // sigma(K[0]) int k0 = K[0][0]; int k1 = K[0][1]; int a0 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF) ) ^ k0; int a1 = ( in[i++] << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i ] & 0xFF) ) ^ k1; int b0, b1; // round function for (int r = 1; r < R; r++) { k0 = K[r][0]; k1 = K[r][1]; b0 = T0[ a0 >>> 24 ] ^ T1[(a0 >>> 16) & 0xFF] ^ T2[(a0 >>> 8) & 0xFF] ^ T3[ a0 & 0xFF] ^ T4[ a1 >>> 24 ] ^ T5[(a1 >>> 16) & 0xFF] ^ T6[(a1 >>> 8) & 0xFF] ^ T7[ a1 & 0xFF] ^ k0; b1 = T0[ a1 >>> 24 ] ^ T1[(a1 >>> 16) & 0xFF] ^ T2[(a1 >>> 8) & 0xFF] ^ T3[ a1 & 0xFF] ^ T4[ a0 >>> 24 ] ^ T5[(a0 >>> 16) & 0xFF] ^ T6[(a0 >>> 8) & 0xFF] ^ T7[ a0 & 0xFF] ^ k1; a0 = b0; a1 = b1; if (DEBUG && debuglevel > 6) { System.out.println("T"+r+"="+Util.toString(a0)+Util.toString(a1)); } } // sigma(K[R]) o gamma applied to previous output k0 = K[R][0]; k1 = K[R][1]; out[j++] = (byte)(S[ a0 >>> 24 ] ^ (k0 >>> 24)); out[j++] = (byte)(S[(a0 >>> 16) & 0xFF] ^ (k0 >>> 16)); out[j++] = (byte)(S[(a0 >>> 8) & 0xFF] ^ (k0 >>> 8)); out[j++] = (byte)(S[ a0 & 0xFF] ^ k0 ); out[j++] = (byte)(S[ a1 >>> 24 ] ^ (k1 >>> 24)); out[j++] = (byte)(S[(a1 >>> 16) & 0xFF] ^ (k1 >>> 16)); out[j++] = (byte)(S[(a1 >>> 8) & 0xFF] ^ (k1 >>> 8)); out[j ] = (byte)(S[ a1 & 0xFF] ^ k1 ); if (DEBUG && debuglevel > 6) { System.out.println("T="+Util.toString(out, j-7, 8)); System.out.println(); } } // Instance methods // ------------------------------------------------------------------------- // java.lang.Cloneable interface implementation ---------------------------- public Object clone() { Khazad result = new Khazad(); result.currentBlockSize = this.currentBlockSize; return result; } // IBlockCipherSpi interface implementation -------------------------------- public Iterator blockSizes() { ArrayList al = new ArrayList(); al.add(new Integer(DEFAULT_BLOCK_SIZE)); return Collections.unmodifiableList(al).iterator(); } public Iterator keySizes() { ArrayList al = new ArrayList(); al.add(new Integer(DEFAULT_KEY_SIZE)); return Collections.unmodifiableList(al).iterator(); } /** * <p>Expands a user-supplied key material into a session key for a * designated <i>block size</i>.</p> * * @param uk the 128-bit user-supplied key material. * @param bs the desired block size in bytes. * @return an Object encapsulating the session key. * @exception IllegalArgumentException if the block size is not 16 (128-bit). * @exception InvalidKeyException if the key data is invalid. */ public Object makeKey(byte[] uk, int bs) throws InvalidKeyException { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } if (uk == null) { throw new InvalidKeyException("Empty key"); } if (uk.length != 16) { throw new InvalidKeyException("Key is not 128-bit."); } int[][] Ke = new int[R + 1][2]; // encryption round keys int[][] Kd = new int[R + 1][2]; // decryption round keys int r, i; int k20, k21, k10, k11, rc0, rc1, kr0, kr1; i = 0; k20 = uk[i++] << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); k21 = uk[i++] << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); k10 = uk[i++] << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); k11 = uk[i++] << 24 | (uk[i++] & 0xFF) << 16 | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF); for (r = 0, i = 0; r <= R; r++) { rc0 = rc[r][0]; rc1 = rc[r][1]; kr0 = T0[ k10 >>> 24 ] ^ T1[(k10 >>> 16) & 0xFF] ^ T2[(k10 >>> 8) & 0xFF] ^ T3[ k10 & 0xFF] ^ T4[(k11 >>> 24) & 0xFF] ^ T5[(k11 >>> 16) & 0xFF] ^ T6[(k11 >>> 8) & 0xFF] ^ T7[ k11 & 0xFF] ^ rc0 ^ k20; kr1 = T0[ k11 >>> 24 ] ^ T1[(k11 >>> 16) & 0xFF] ^ T2[(k11 >>> 8) & 0xFF] ^ T3[ k11 & 0xFF] ^ T4[(k10 >>> 24) & 0xFF] ^ T5[(k10 >>> 16) & 0xFF] ^ T6[(k10 >>> 8) & 0xFF] ^ T7[ k10 & 0xFF] ^ rc1 ^ k21; Ke[r][0] = kr0; Ke[r][1] = kr1; k20 = k10; k21 = k11; k10 = kr0; k11 = kr1; if (r == 0 || r == R) { Kd[R-r][0] = kr0; Kd[R-r][1] = kr1; } else { Kd[R-r][0] = T0[S[ kr0 >>> 24 ] & 0xFF] ^ T1[S[(kr0 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(kr0 >>> 8) & 0xFF] & 0xFF] ^ T3[S[ kr0 & 0xFF] & 0xFF] ^ T4[S[ kr1 >>> 24 ] & 0xFF] ^ T5[S[(kr1 >>> 16) & 0xFF] & 0xFF] ^ T6[S[(kr1 >>> 8) & 0xFF] & 0xFF] ^ T7[S[ kr1 & 0xFF] & 0xFF]; Kd[R-r][1] = T0[S[ kr1 >>> 24 ] & 0xFF] ^ T1[S[(kr1 >>> 16) & 0xFF] & 0xFF] ^ T2[S[(kr1 >>> 8) & 0xFF] & 0xFF] ^ T3[S[ kr1 & 0xFF] & 0xFF] ^ T4[S[ kr0 >>> 24 ] & 0xFF] ^ T5[S[(kr0 >>> 16) & 0xFF] & 0xFF] ^ T6[S[(kr0 >>> 8) & 0xFF] & 0xFF] ^ T7[S[ kr0 & 0xFF] & 0xFF]; } } if (DEBUG && debuglevel > 8) { System.out.println(); System.out.println("Key schedule"); System.out.println(); System.out.println("Ke[]:"); for (r = 0; r < R+1; r++) { System.out.println("#"+r+": 0x" +Util.toString(Ke[r][0])+Util.toString(Ke[r][1])); } System.out.println(); System.out.println("Kd[]:"); for (r = 0; r < R+1; r++) { System.out.println("#"+r+": 0x" +Util.toString(Kd[r][0])+Util.toString(Kd[r][1])); } System.out.println(); } return new Object[] {Ke, Kd}; } public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } int[][] K = (int[][])((Object[]) k)[0]; khazad(in, i, out, j, K); } public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) { if (bs != DEFAULT_BLOCK_SIZE) { throw new IllegalArgumentException(); } int[][] K = (int[][])((Object[]) k)[1]; khazad(in, i, out, j, K); } public boolean selfTest() { if (valid == null) { boolean result = super.selfTest(); // do symmetry tests if (result) { result = testKat(KAT_KEY, KAT_CT); } valid = new Boolean(result); } return valid.booleanValue(); } }