package gnu.crypto.assembly; // ---------------------------------------------------------------------------- // $Id: Cascade.java,v 1.8 2005/10/06 04:24:13 rsdio Exp $ // // Copyright (C) 2003, Free Software Foundation, Inc. // // This file is part of GNU Crypto. // // GNU Crypto is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // GNU Crypto is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; see the file COPYING. If not, write to the // // Free Software Foundation Inc., // 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301 // USA // // Linking this library statically or dynamically with other modules is // making a combined work based on this library. Thus, the terms and // conditions of the GNU General Public License cover the whole // combination. // // As a special exception, the copyright holders of this library give // you permission to link this library with independent modules to // produce an executable, regardless of the license terms of these // independent modules, and to copy and distribute the resulting // executable under terms of your choice, provided that you also meet, // for each linked independent module, the terms and conditions of the // license of that module. An independent module is a module which is // not derived from or based on this library. If you modify this // library, you may extend this exception to your version of the // library, but you are not obligated to do so. If you do not wish to // do so, delete this exception statement from your version. // ---------------------------------------------------------------------------- import java.math.BigInteger; import java.security.InvalidKeyException; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedList; import java.util.Map; import java.util.Set; /** * <p>A <i>Cascade</i> Cipher is the concatenation of two or more block ciphers * each with independent keys. Plaintext is input to the first stage; the output * of stage <code>i</code> is input to stage <code>i + 1</code>; and the output * of the last stage is the <i>Cascade</i>'s ciphertext output.</p> * * <p>In the simplest case, all stages in a <code>Cascade</code> have <i>k</i>-bit * keys, and the stage inputs and outputs are all n-bit quantities. The stage * ciphers may differ (general cascade of ciphers), or all be identical (cascade * of identical ciphers).</p> * * <p>The term "block ciphers" used above refers to implementations of * {@link gnu.crypto.mode.IMode}, including the {@link gnu.crypto.mode.ECB} * mode which basically exposes a symmetric-key block cipher algorithm as a * <i>Mode</i> of Operations.</p> * * <p>References:</p> * * <ol> * <li><a href="http://www.cacr.math.uwaterloo.ca/hac">[HAC]</a>: Handbook of * Applied Cryptography.<br> * CRC Press, Inc. ISBN 0-8493-8523-7, 1997<br> * Menezes, A., van Oorschot, P. and S. Vanstone.</li> * </ol> * * @version $Revision: 1.8 $ */ public class Cascade { // Constants and variables // ------------------------------------------------------------------------- public static final String DIRECTION = "gnu.crypto.assembly.cascade.direction"; /** The map of Stages chained in this cascade. */ protected HashMap stages; /** The ordered list of Stage UIDs to their attribute maps. */ protected LinkedList stageKeys; /** The current operational direction of this instance. */ protected Direction wired; /** The curently set block-size for this instance. */ protected int blockSize; // Constructor(s) // ------------------------------------------------------------------------- public Cascade() { super(); stages = new HashMap(3); stageKeys = new LinkedList(); wired = null; blockSize = 0; } // Class methods // ------------------------------------------------------------------------- /** * Returns the Least Common Multiple of two integers. * * @param a the first integer. * @param b the second integer. * @return the LCM of <code>abs(a)</code> and <code>abs(b)</code>. */ private static final int lcm(int a, int b) { BigInteger A = BigInteger.valueOf(a * 1L); BigInteger B = BigInteger.valueOf(b * 1L); return A.multiply(B).divide(A.gcd(B)).abs().intValue(); } // Instance methods // ------------------------------------------------------------------------- /** * Adds to the end of the current chain, a designated {@link Stage}. * * @param stage the {@link Stage} to append to the chain. * @return a unique identifier for this stage, within this cascade. * @throws IllegalStateException if the instance is already initialised. * @throws IllegalArgumentException if the designated stage is already in * the chain, or it has incompatible characteristics with the current * elements already in the chain. */ public Object append(Stage stage) throws IllegalArgumentException { return insert(size(), stage); } /** * Adds to the begining of the current chain, a designated {@link Stage}. * * @param stage the {@link Stage} to prepend to the chain. * @return a unique identifier for this stage, within this cascade. * @throws IllegalStateException if the instance is already initialised. * @throws IllegalArgumentException if the designated stage is already in * the chain, or it has incompatible characteristics with the current * elements already in the chain. */ public Object prepend(Stage stage) throws IllegalArgumentException { return insert(0, stage); } /** * Inserts a {@link Stage} into the current chain, at the specified index * (zero-based) position. * * @param stage the {@link Stage} to insert into the chain. * @return a unique identifier for this stage, within this cascade. * @throws IllegalArgumentException if the designated stage is already in * the chain, or it has incompatible characteristics with the current * elements already in the chain. * @throws IllegalStateException if the instance is already initialised. * @throws IndexOutOfBoundsException if <code>index</code> is less than * <code>0</code> or greater than the current size of this cascade. */ public Object insert(int index, Stage stage) throws IllegalArgumentException, IndexOutOfBoundsException { if (stages.containsValue(stage)) { throw new IllegalArgumentException(); } if (wired != null || stage == null) { throw new IllegalStateException(); } if (index < 0 || index > size()) { throw new IndexOutOfBoundsException(); } // check that there is a non-empty set of common block-sizes Set set = stage.blockSizes(); if (stages.isEmpty()) { if (set.isEmpty()) { throw new IllegalArgumentException("1st stage with no block sizes"); } } else { Set common = this.blockSizes(); common.retainAll(set); if (common.isEmpty()) { throw new IllegalArgumentException("no common block sizes found"); } } Object result = new Object(); stageKeys.add(index, result); stages.put(result, stage); return result; } /** * Returns the current number of stages in this chain. * * @return the current count of stages in this chain. */ public int size() { return stages.size(); } /** * Returns an {@link Iterator} over the stages contained in this instance. * Each element of this iterator is a concrete implementation of a {@link * Stage}. * * @return an {@link Iterator} over the stages contained in this instance. * Each element of the returned iterator is a concrete instance of a {@link * Stage}. */ public Iterator stages() { LinkedList result = new LinkedList(); for (Iterator it = stageKeys.listIterator(); it.hasNext(); ) { result.addLast(stages.get(it.next())); } return result.listIterator(); } /** * Returns the {@link Set} of supported block sizes for this * <code>Cascade</code> that are common to all of its chained stages. Each * element in the returned {@link Set} is an instance of {@link Integer}. * * @return a {@link Set} of supported block sizes common to all the stages * of the chain. */ public Set blockSizes() { HashSet result = null; for (Iterator it = stages.values().iterator(); it.hasNext(); ) { Stage aStage = (Stage) it.next(); if (result == null) { // first time result = new HashSet(aStage.blockSizes()); } else { result.retainAll(aStage.blockSizes()); } } return result == null ? Collections.EMPTY_SET : result; } /** * Initialises the chain for operation with specific characteristics. * * @param attributes a set of name-value pairs that describes the desired * future behaviour of this instance. * @throws IllegalStateException if the chain, or any of its stages, is * already initialised. * @throws InvalidKeyException if the intialisation data provided with the * stage is incorrect or causes an invalid key to be generated. * @see Direction#FORWARD * @see Direction#REVERSED */ public void init(Map attributes) throws InvalidKeyException { if (wired != null) { throw new IllegalStateException(); } Direction flow = (Direction) attributes.get(DIRECTION); if (flow == null) { flow = Direction.FORWARD; } int optimalSize = 0; for (Iterator it = stageKeys.listIterator(); it.hasNext(); ) { Object id = it.next(); Map attr = (Map) attributes.get(id); attr.put(Stage.DIRECTION, flow); Stage stage = (Stage) stages.get(id); stage.init(attr); optimalSize = optimalSize == 0 ? stage.currentBlockSize() : lcm(optimalSize, stage.currentBlockSize()); } if (flow == Direction.REVERSED) { // reverse order Collections.reverse(stageKeys); } wired = flow; blockSize = optimalSize; } /** * Returns the currently set block size for the chain. * * @return the current block size for the chain. * @throws IllegalStateException if the instance is not initialised. */ public int currentBlockSize() { if (wired == null) { throw new IllegalStateException(); } return blockSize; } /** * Resets the chain for re-initialisation and use with other characteristics. * This method always succeeds. */ public void reset() { for (Iterator it = stageKeys.listIterator(); it.hasNext(); ) { ((Stage) stages.get(it.next())).reset(); } if (wired == Direction.REVERSED) { // reverse it back Collections.reverse(stageKeys); } wired = null; blockSize = 0; } /** * Processes exactly one block of <i>plaintext</i> (if initialised in the * {@link Direction#FORWARD} state) or <i>ciphertext</i> (if initialised in the * {@link Direction#REVERSED} state). * * @param in the plaintext. * @param inOffset index of <code>in</code> from which to start considering * data. * @param out the ciphertext. * @param outOffset index of <code>out</code> from which to store result. * @throws IllegalStateException if the instance is not initialised. */ public void update(byte[] in, int inOffset, byte[] out, int outOffset) { if (wired == null) { throw new IllegalStateException(); } int stageBlockSize, j, i = stages.size(); for (Iterator it = stageKeys.listIterator(); it.hasNext(); ) { Stage stage = (Stage) stages.get(it.next()); stageBlockSize = stage.currentBlockSize(); for (j = 0; j < blockSize; j += stageBlockSize) { stage.update(in, inOffset+j, out, outOffset+j); } i--; if (i > 0) { System.arraycopy(out, outOffset, in, inOffset, blockSize); } } } /** * Conducts a simple <i>correctness</i> test that consists of basic symmetric * encryption / decryption test(s) for all supported block and key sizes of * underlying block cipher(s) wrapped by Mode leafs. The test also includes * one (1) variable key Known Answer Test (KAT) for each block cipher. * * @return <code>true</code> if the implementation passes simple * <i>correctness</i> tests. Returns <code>false</code> otherwise. */ public boolean selfTest() { for (Iterator it = stageKeys.listIterator(); it.hasNext(); ) { if (! ((Stage) stages.get(it.next())).selfTest()) { return false; } } return true; } }