/* * FloatSampleBuffer.java */ /* * Copyright (c) 2000 by Florian Bomers <florian@bome.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Library General Public License as published * by the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ package org.tritonus.share.sampled; import java.util.ArrayList; import java.util.Iterator; import java.util.Random; import javax.sound.sampled.AudioSystem; import javax.sound.sampled.AudioFormat; import javax.sound.sampled.AudioFileFormat; import javax.sound.sampled.AudioInputStream; import javax.sound.sampled.spi.AudioFileWriter; import org.tritonus.share.TDebug; /** * A class for small buffers of samples in linear, 32-bit * floating point format. * <p> * It is supposed to be a replacement of the byte[] stream * architecture of JavaSound, especially for chains of * AudioInputStreams. Ideally, all involved AudioInputStreams * handle reading into a FloatSampleBuffer. * <p> * Specifications: * <ol> * <li>Channels are separated, i.e. for stereo there are 2 float arrays * with the samples for the left and right channel * <li>All data is handled in samples, where one sample means * one float value in each channel * <li>All samples are normalized to the interval [-1.0...1.0] * </ol> * <p> * When a cascade of AudioInputStreams use FloatSampleBuffer for * processing, they may implement the interface FloatSampleInput. * This signals that this stream may provide float buffers * for reading. The data is <i>not</i> converted back to bytes, * but stays in a single buffer that is passed from stream to stream. * For that serves the read(FloatSampleBuffer) method, which is * then used as replacement for the byte-based read functions of * AudioInputStream.<br> * However, backwards compatibility must always be retained, so * even when an AudioInputStream implements FloatSampleInput, * it must work the same way when any of the byte-based read methods * is called.<br> * As an example, consider the following set-up:<br> * <ul> * <li>auAIS is an AudioInputStream (AIS) that reads from an AU file * in 8bit pcm at 8000Hz. It does not implement FloatSampleInput. * <li>pcmAIS1 is an AIS that reads from auAIS and converts the data * to PCM 16bit. This stream implements FloatSampleInput, i.e. it * can generate float audio data from the ulaw samples. * <li>pcmAIS2 reads from pcmAIS1 and adds a reverb. * It operates entirely on floating point samples. * <li>The method that reads from pcmAIS2 (i.e. AudioSystem.write) does * not handle floating point samples. * </ul> * So, what happens when a block of samples is read from pcmAIS2 ? * <ol> * <li>the read(byte[]) method of pcmAIS2 is called * <li>pcmAIS2 always operates on floating point samples, so * it uses an own instance of FloatSampleBuffer and initializes * it with the number of samples requested in the read(byte[]) * method. * <li>It queries pcmAIS1 for the FloatSampleInput interface. As it * implements it, pcmAIS2 calls the read(FloatSampleBuffer) method * of pcmAIS1. * <li>pcmAIS1 notes that its underlying stream does not support floats, * so it instantiates a byte buffer which can hold the number of * samples of the FloatSampleBuffer passed to it. It calls the * read(byte[]) method of auAIS. * <li>auAIS fills the buffer with the bytes. * <li>pcmAIS1 calls the <code>initFromByteArray</code> method of * the float buffer to initialize it with the 8 bit data. * <li>Then pcmAIS1 processes the data: as the float buffer is * normalized, it does nothing with the buffer - and returns * control to pcmAIS2. The SampleSizeInBits field of the * AudioFormat of pcmAIS1 defines that it should be 16 bits. * <li>pcmAIS2 receives the filled buffer from pcmAIS1 and does * its processing on the buffer - it adds the reverb. * <li>As pcmAIS2's read(byte[]) method had been called, pcmAIS2 * calls the <code>convertToByteArray</code> method of * the float buffer to fill the byte buffer with the * resulting samples. * </ol> * <p> * To summarize, here are some advantages when using a FloatSampleBuffer * for streaming: * <ul> * <li>no conversions from/to bytes need to be done during processing * <li>the sample size in bits is irrelevant - normalized range * <li>higher quality for processing * <li>separated channels (easy process/remove/add channels) * <li>potentially less copying of audio data, as processing * of the float samples is generally done in-place. The same * instance of a FloatSampleBuffer may be used from the data source * to the final data sink. * </ul> * <p> * Simple benchmarks showed that the processing needs * for the conversion to and from float is about the same as * when converting it to shorts or ints without dithering, * and significantly higher with dithering. An own implementation * of a random number generator may improve this. * <p> * "Lazy" deletion of samples and channels:<br> * <ul> * <li>When the sample count is reduced, the arrays are not resized, but * only the member variable <code>sampleCount</code> is reduced. A subsequent * increase of the sample count (which will occur frequently), will check * that and eventually reuse the existing array. * <li>When a channel is deleted, it is not removed from memory but only * hidden. Subsequent insertions of a channel will check whether a hidden channel * can be reused. * </ul> * The lazy mechanism can save many array instantiation (and copy-) operations * for the sake of performance. All relevant methods exist in a second * version which allows explicitely to disable lazy deletion. * <p> * Use the <code>reset</code> functions to clear the memory and remove * hidden samples and channels. * <p> * Note that the lazy mechanism implies that the arrays returned * from <code>getChannel(int)</code> may have a greater size * than getSampleCount(). Consequently, be sure to never rely on the * length field of the sample arrays. * <p> * As an example, consider a chain of converters that all act * on the same instance of FloatSampleBuffer. Some converters * may decrease the sample count (e.g. sample rate converter) and * delete channels (e.g. PCM2PCM converter). So, processing of one * block will decrease both. For the next block, all starts * from the beginning. With the lazy mechanism, all float arrays * are only created once for processing all blocks.<br> * Having lazy disabled would require for each chunk that is processed * <ol> * <li>new instantiation of all channel arrays * at the converter chain beginning as they have been * either deleted or decreased in size during processing of the * previous chunk, and * <li>re-instantiation of all channel arrays for * the reduction of the sample count. * </ol> * <p> * Dithering:<br> * By default, this class uses dithering for reduction * of sample width (e.g. original data was 16bit, target * data is 8bit). As dithering may be needed in other cases * (especially when the float samples are processed using DSP * algorithms), or it is preferred to switch it off, * dithering can be explicitely switched on or off with * the method setDitherMode(int).<br> * For a discussion about dithering, see * <a href="http://www.iqsoft.com/IQSMagazine/BobsSoapbox/Dithering.htm"> * here</a> and * <a href="http://www.iqsoft.com/IQSMagazine/BobsSoapbox/Dithering2.htm"> * here</a>. * * @author Florian Bomers */ public class FloatSampleBuffer { /** Whether the functions without lazy parameter are lazy or not. */ private static final boolean LAZY_DEFAULT=true; private ArrayList channels=new ArrayList(); // contains for each channel a float array private int sampleCount=0; private int channelCount=0; private float sampleRate=0; private int originalFormatType=0; /** Constant for setDitherMode: dithering will be enabled if sample size is decreased */ public static final int DITHER_MODE_AUTOMATIC=0; /** Constant for setDitherMode: dithering will be done */ public static final int DITHER_MODE_ON=1; /** Constant for setDitherMode: dithering will not be done */ public static final int DITHER_MODE_OFF=2; private static Random random=null; private float ditherBits=0.8f; private boolean doDither=false; // set in convertFloatToBytes // e.g. the sample rate converter may want to force dithering private int ditherMode=DITHER_MODE_AUTOMATIC; // sample width (must be in order !) private static final int F_8=1; private static final int F_16=2; private static final int F_24=3; private static final int F_32=4; private static final int F_SAMPLE_WIDTH_MASK=F_8 | F_16 | F_24 | F_32; // format bit-flags private static final int F_SIGNED=8; private static final int F_BIGENDIAN=16; // supported formats private static final int CT_8S=F_8 | F_SIGNED; private static final int CT_8U=F_8; private static final int CT_16SB=F_16 | F_SIGNED | F_BIGENDIAN; private static final int CT_16SL=F_16 | F_SIGNED; private static final int CT_24SB=F_24 | F_SIGNED | F_BIGENDIAN; private static final int CT_24SL=F_24 | F_SIGNED; private static final int CT_32SB=F_32 | F_SIGNED | F_BIGENDIAN; private static final int CT_32SL=F_32 | F_SIGNED; //////////////////////////////// initialization ///////////////////////////////// public FloatSampleBuffer() { this(0,0,1); } public FloatSampleBuffer(int channelCount, int sampleCount, float sampleRate) { init(channelCount, sampleCount, sampleRate, LAZY_DEFAULT); } public FloatSampleBuffer(byte[] buffer, int offset, int byteCount, AudioFormat format) { this(format.getChannels(), byteCount/(format.getSampleSizeInBits()/8*format.getChannels()), format.getSampleRate()); initFromByteArray(buffer, offset, byteCount, format); } protected void init(int channelCount, int sampleCount, float sampleRate) { init(channelCount, sampleCount, sampleRate, LAZY_DEFAULT); } protected void init(int channelCount, int sampleCount, float sampleRate, boolean lazy) { if (channelCount<0 || sampleCount<0) { throw new IllegalArgumentException( "Invalid parameters in initialization of FloatSampleBuffer."); } setSampleRate(sampleRate); if (getSampleCount()!=sampleCount || getChannelCount()!=channelCount) { createChannels(channelCount, sampleCount, lazy); } } private void createChannels(int channelCount, int sampleCount, boolean lazy) { this.sampleCount=sampleCount; // lazy delete of all channels. Intentionally lazy ! this.channelCount=0; for (int ch=0; ch<channelCount; ch++) { insertChannel(ch, false, lazy); } if (!lazy) { // remove hidden channels while (channels.size()>channelCount) { channels.remove(channels.size()-1); } } } public void initFromByteArray(byte[] buffer, int offset, int byteCount, AudioFormat format) { initFromByteArray(buffer, offset, byteCount, format, LAZY_DEFAULT); } public void initFromByteArray(byte[] buffer, int offset, int byteCount, AudioFormat format, boolean lazy) { if (offset+byteCount>buffer.length) { throw new IllegalArgumentException ("FloatSampleBuffer.initFromByteArray: buffer too small."); } boolean signed=format.getEncoding().equals(AudioFormat.Encoding.PCM_SIGNED); if (!signed && !format.getEncoding().equals(AudioFormat.Encoding.PCM_UNSIGNED)) { throw new IllegalArgumentException ("FloatSampleBuffer: only PCM samples are possible."); } int bytesPerSample=format.getSampleSizeInBits()/8; int bytesPerFrame=bytesPerSample*format.getChannels(); int thisSampleCount=byteCount/bytesPerFrame; init(format.getChannels(), thisSampleCount, format.getSampleRate(), lazy); int formatType=getFormatType(format.getSampleSizeInBits(), signed, format.isBigEndian()); // save format for automatic dithering mode originalFormatType=formatType; for (int ch=0; ch<format.getChannels(); ch++) { convertByteToFloat(buffer, offset, bytesPerFrame, formatType, getChannel(ch), 0, sampleCount); offset+=bytesPerSample; // next channel } } public void initFromFloatSampleBuffer(FloatSampleBuffer source) { init(source.getChannelCount(), source.getSampleCount(), source.getSampleRate()); for (int ch=0; ch<getChannelCount(); ch++) { System.arraycopy(source.getChannel(ch), 0, getChannel(ch), 0, sampleCount); } } /** * deletes all channels, frees memory... * This also removes hidden channels by lazy remove. */ public void reset() { init(0,0,1, false); } /** * destroys any existing data and creates new channels. * It also destroys lazy removed channels and samples. */ public void reset(int channels, int sampleCount, float sampleRate) { init(channels, sampleCount, sampleRate, false); } //////////////////////////////// conversion back to bytes ///////////////////////////////// /** * returns the required size of the buffer * when convertToByteArray(..) is called */ public int getByteArrayBufferSize(AudioFormat format) { if (!format.getEncoding().equals(AudioFormat.Encoding.PCM_SIGNED) && !format.getEncoding().equals(AudioFormat.Encoding.PCM_UNSIGNED)) { throw new IllegalArgumentException ("FloatSampleBuffer: only PCM samples are possible."); } int bytesPerSample=format.getSampleSizeInBits()/8; int bytesPerFrame=bytesPerSample*format.getChannels(); return bytesPerFrame*getSampleCount(); } /** * @return number of bytes copied to buffer * @throws Exception when buffer is too small or <code>format</code> doesn't match */ public int convertToByteArray(byte[] buffer, int offset, AudioFormat format) { int byteCount=getByteArrayBufferSize(format); if (offset+byteCount>buffer.length) { throw new IllegalArgumentException ("FloatSampleBuffer.convertToByteArray: buffer too small."); } boolean signed=format.getEncoding().equals(AudioFormat.Encoding.PCM_SIGNED); if (!signed && !format.getEncoding().equals(AudioFormat.Encoding.PCM_UNSIGNED)) { throw new IllegalArgumentException ("FloatSampleBuffer.convertToByteArray: only PCM samples are allowed."); } if (format.getSampleRate()!=getSampleRate()) { throw new IllegalArgumentException ("FloatSampleBuffer.convertToByteArray: different samplerates."); } if (format.getChannels()!=getChannelCount()) { throw new IllegalArgumentException ("FloatSampleBuffer.convertToByteArray: different channel count."); } int bytesPerSample=format.getSampleSizeInBits()/8; int bytesPerFrame=bytesPerSample*format.getChannels(); int formatType=getFormatType(format.getSampleSizeInBits(), signed, format.isBigEndian()); for (int ch=0; ch<format.getChannels(); ch++) { convertFloatToByte(getChannel(ch), sampleCount, buffer, offset, bytesPerFrame, formatType); offset+=bytesPerSample; // next channel } return getSampleCount()*bytesPerFrame; } /** * Creates a new byte[] buffer and returns it. * Throws an exception when sample rate doesn't match. * @see #convertToByteArray(byte[], int, AudioFormat) */ public byte[] convertToByteArray(AudioFormat format) { // throws exception when sampleRate doesn't match // creates a new byte[] buffer and returns it byte[] res=new byte[getByteArrayBufferSize(format)]; convertToByteArray(res, 0, format); return res; } //////////////////////////////// actions ///////////////////////////////// /** * Resizes this buffer. * <p>If <code>keepOldSamples</code> is true, as much as possible samples are * retained. If the buffer is enlarged, silence is added at the end. * If <code>keepOldSamples</code> is false, existing samples are discarded * and the buffer contains random samples. */ public void changeSampleCount(int newSampleCount, boolean keepOldSamples) { int oldSampleCount=getSampleCount(); if (oldSampleCount==newSampleCount) { return; } Object[] oldChannels=null; if (keepOldSamples) { oldChannels=getAllChannels(); } init(getChannelCount(), newSampleCount, getSampleRate()); if (keepOldSamples) { // copy old channels and eventually silence out new samples int copyCount=newSampleCount<oldSampleCount? newSampleCount:oldSampleCount; for (int ch=0; ch<getChannelCount(); ch++) { float[] oldSamples=(float[]) oldChannels[ch]; float[] newSamples=(float[]) getChannel(ch); if (oldSamples!=newSamples) { // if this sample array was not object of lazy delete System.arraycopy(oldSamples, 0, newSamples, 0, copyCount); } if (oldSampleCount<newSampleCount) { // silence out new samples for (int i=oldSampleCount; i<newSampleCount; i++) { newSamples[i]=0.0f; } } } } } public void makeSilence() { // silence all channels if (getChannelCount()>0) { makeSilence(0); for (int ch=1; ch<getChannelCount(); ch++) { copyChannel(0, ch); } } } public void makeSilence(int channel) { float[] samples=getChannel(0); for (int i=0; i<getSampleCount(); i++) { samples[i]=0.0f; } } public void addChannel(boolean silent) { // creates new, silent channel insertChannel(getChannelCount(), silent); } /** * lazy insert of a (silent) channel at position <code>index</code>. */ public void insertChannel(int index, boolean silent) { insertChannel(index, silent, LAZY_DEFAULT); } /** * Inserts a channel at position <code>index</code>. * <p>If <code>silent</code> is true, the new channel will be silent. * Otherwise it will contain random data. * <p>If <code>lazy</code> is true, hidden channels which have at least getSampleCount() * elements will be examined for reusage as inserted channel.<br> * If <code>lazy</code> is false, still hidden channels are reused, * but it is assured that the inserted channel has exactly getSampleCount() elements, * thus not wasting memory. */ public void insertChannel(int index, boolean silent, boolean lazy) { int physSize=channels.size(); int virtSize=getChannelCount(); float[] newChannel=null; if (physSize>virtSize) { // there are hidden channels. Try to use one. for (int ch=virtSize; ch<physSize; ch++) { float[] thisChannel=(float[]) channels.get(ch); if ((lazy && thisChannel.length>=getSampleCount()) || (!lazy && thisChannel.length==getSampleCount())) { // we found a matching channel. Use it ! newChannel=thisChannel; channels.remove(ch); break; } } } if (newChannel==null) { newChannel=new float[getSampleCount()]; } channels.add(index, newChannel); this.channelCount++; if (silent) { makeSilence(index); } } /** performs a lazy remove of the channel */ public void removeChannel(int channel) { removeChannel(channel, LAZY_DEFAULT); } /** * Removes a channel. * If lazy is true, the channel is not physically removed, but only hidden. * These hidden channels are reused by subsequent calls to addChannel * or insertChannel. */ public void removeChannel(int channel, boolean lazy) { if (!lazy) { channels.remove(channel); } else if (channel<getChannelCount()-1) { // if not already, move this channel at the end channels.add(channels.remove(channel)); } channelCount--; } /** * both source and target channel have to exist. targetChannel * will be overwritten */ public void copyChannel(int sourceChannel, int targetChannel) { float[] source=getChannel(sourceChannel); float[] target=getChannel(targetChannel); System.arraycopy(source, 0, target, 0, getSampleCount()); } /** * Copies data inside all channel. When the 2 regions * overlap, the behavior is not specified. */ public void copy(int sourceIndex, int destIndex, int length) { for (int i=0; i<getChannelCount(); i++) { copy(i, sourceIndex, destIndex, length); } } /** * Copies data inside a channel. When the 2 regions * overlap, the behavior is not specified. */ public void copy(int channel, int sourceIndex, int destIndex, int length) { float[] data=getChannel(channel); int bufferCount=getSampleCount(); if (sourceIndex+length>bufferCount || destIndex+length>bufferCount || sourceIndex<0 || destIndex<0 || length<0) { throw new IndexOutOfBoundsException("parameters exceed buffer size"); } System.arraycopy(data, sourceIndex, data, destIndex, length); } /** * Mix up of 1 channel to n channels.<br> * It copies the first channel to all newly created channels. * @param targetChannelCount the number of channels that this sample buffer * will have after expanding. NOT the number of * channels to add ! * @exception IllegalArgumentException if this buffer does not have one * channel before calling this method. */ public void expandChannel(int targetChannelCount) { // even more sanity... if (getChannelCount()!=1) { throw new IllegalArgumentException( "FloatSampleBuffer: can only expand channels for mono signals."); } for (int ch=1; ch<targetChannelCount; ch++) { addChannel(false); copyChannel(0, ch); } } /** * Mix down of n channels to one channel.<br> * It uses a simple mixdown: all other channels are added to first channel.<br> * The volume is NOT lowered ! * Be aware, this might cause clipping when converting back * to integer samples. */ public void mixDownChannels() { float[] firstChannel=getChannel(0); int sampleCount=getSampleCount(); int channelCount=getChannelCount(); for (int ch=channelCount-1; ch>0; ch--) { float[] thisChannel=getChannel(ch); for (int i=0; i<sampleCount; i++) { firstChannel[i]+=thisChannel[i]; } removeChannel(ch); } } public void setSamplesFromBytes(byte[] srcBuffer, int srcOffset, AudioFormat format, int destOffset, int lengthInSamples) { int bytesPerSample = (format.getSampleSizeInBits() + 7)/8; int bytesPerFrame = bytesPerSample * format.getChannels(); if (srcOffset + (lengthInSamples * bytesPerFrame) > srcBuffer.length) { throw new IllegalArgumentException ("FloatSampleBuffer.setSamplesFromBytes: srcBuffer too small."); } if (destOffset + lengthInSamples > getSampleCount()) { throw new IllegalArgumentException ("FloatSampleBuffer.setSamplesFromBytes: destBuffer too small."); } boolean signed = format.getEncoding().equals(AudioFormat.Encoding.PCM_SIGNED); boolean unsigned = format.getEncoding().equals(AudioFormat.Encoding.PCM_UNSIGNED); if (!signed && !unsigned) { throw new IllegalArgumentException ("FloatSampleBuffer: only PCM samples are possible."); } int formatType = getFormatType(format.getSampleSizeInBits(), signed, format.isBigEndian()); for (int ch = 0; ch < format.getChannels(); ch++) { convertByteToFloat(srcBuffer, srcOffset, bytesPerFrame, formatType, getChannel(ch), destOffset, lengthInSamples); srcOffset += bytesPerSample; // next channel } } //////////////////////////////// properties ///////////////////////////////// public int getChannelCount() { return channelCount; } public int getSampleCount() { return sampleCount; } public float getSampleRate() { return sampleRate; } /** * Sets the sample rate of this buffer. * NOTE: no conversion is done. The samples are only re-interpreted. */ public void setSampleRate(float sampleRate) { if (sampleRate<=0) { throw new IllegalArgumentException ("Invalid samplerate for FloatSampleBuffer."); } this.sampleRate=sampleRate; } /** * NOTE: the returned array may be larger than sampleCount. So in any case, * sampleCount is to be respected. */ public float[] getChannel(int channel) { if (channel<0 || channel>=getChannelCount()) { throw new IllegalArgumentException( "FloatSampleBuffer: invalid channel number."); } return (float[]) channels.get(channel); } public Object[] getAllChannels() { Object[] res=new Object[getChannelCount()]; for (int ch=0; ch<getChannelCount(); ch++) { res[ch]=getChannel(ch); } return res; } /** * Set the number of bits for dithering. * Typically, a value between 0.2 and 0.9 gives best results. * <p>Note: this value is only used, when dithering is actually performed. */ public void setDitherBits(float ditherBits) { if (ditherBits<=0) { throw new IllegalArgumentException("DitherBits must be greater than 0"); } this.ditherBits=ditherBits; } public float getDitherBits() { return ditherBits; } /** * Sets the mode for dithering. * This can be one of: * <ul><li>DITHER_MODE_AUTOMATIC: it is decided automatically, * whether dithering is necessary - in general when sample size is * decreased. * <li>DITHER_MODE_ON: dithering will be forced * <li>DITHER_MODE_OFF: dithering will not be done. * </ul> */ public void setDitherMode(int mode) { if (mode!=DITHER_MODE_AUTOMATIC && mode!=DITHER_MODE_ON && mode!=DITHER_MODE_OFF) { throw new IllegalArgumentException("Illegal DitherMode"); } this.ditherMode=mode; } public int getDitherMode() { return ditherMode; } /////////////////////////////// "low level" conversion functions //////////////////////////////// public int getFormatType(int ssib, boolean signed, boolean bigEndian) { int bytesPerSample=ssib/8; int res=0; if (ssib==8) { res=F_8; } else if (ssib==16) { res=F_16; } else if (ssib==24) { res=F_24; } else if (ssib==32) { res=F_32; } if (res==0) { throw new IllegalArgumentException ("FloatSampleBuffer: unsupported sample size of " +ssib+" bits per sample."); } if (!signed && bytesPerSample>1) { throw new IllegalArgumentException ("FloatSampleBuffer: unsigned samples larger than " +"8 bit are not supported"); } if (signed) { res|=F_SIGNED; } if (bigEndian && (ssib!=8)) { res|=F_BIGENDIAN; } return res; } private static final float twoPower7=128.0f; private static final float twoPower15=32768.0f; private static final float twoPower23=8388608.0f; private static final float twoPower31=2147483648.0f; private static final float invTwoPower7=1/twoPower7; private static final float invTwoPower15=1/twoPower15; private static final float invTwoPower23=1/twoPower23; private static final float invTwoPower31=1/twoPower31; /*public*/ private static void convertByteToFloat(byte[] input, int inputOffset, int bytesPerFrame, int formatType, float[] output, int outputOffset, int sampleCount) { //if (TDebug.TraceAudioConverter) { // TDebug.out("FloatSampleBuffer.convertByteToFloat, formatType=" // +formatType2Str(formatType)); //} int sample; int endCount = outputOffset + sampleCount; for (sample = outputOffset; sample < endCount; sample++) { // do conversion switch (formatType) { case CT_8S: output[sample]= ((float) input[inputOffset])*invTwoPower7; break; case CT_8U: output[sample]= ((float) ((input[inputOffset] & 0xFF)-128))*invTwoPower7; break; case CT_16SB: output[sample]= ((float) ((input[inputOffset]<<8) | (input[inputOffset+1] & 0xFF)))*invTwoPower15; break; case CT_16SL: output[sample]= ((float) ((input[inputOffset+1]<<8) | (input[inputOffset] & 0xFF)))*invTwoPower15; break; case CT_24SB: output[sample]= ((float) ((input[inputOffset]<<16) | ((input[inputOffset+1] & 0xFF)<<8) | (input[inputOffset+2] & 0xFF)))*invTwoPower23; break; case CT_24SL: output[sample]= ((float) ((input[inputOffset+2]<<16) | ((input[inputOffset+1] & 0xFF)<<8) | (input[inputOffset] & 0xFF)))*invTwoPower23; break; case CT_32SB: output[sample]= ((float) ((input[inputOffset]<<24) | ((input[inputOffset+1] & 0xFF)<<16) | ((input[inputOffset+2] & 0xFF)<<8) | (input[inputOffset+3] & 0xFF)))*invTwoPower31; break; case CT_32SL: output[sample]= ((float) ((input[inputOffset+3]<<24) | ((input[inputOffset+2] & 0xFF)<<16) | ((input[inputOffset+1] & 0xFF)<<8) | (input[inputOffset] & 0xFF)))*invTwoPower31; break; default: throw new IllegalArgumentException ("Unsupported formatType="+formatType); } inputOffset += bytesPerFrame; } } protected byte quantize8(float sample) { if (doDither) { sample+=random.nextFloat()*ditherBits; } if (sample>=127.0f) { return (byte) 127; } else if (sample<=-128) { return (byte) -128; } else { return (byte) (sample<0?(sample-0.5f):(sample+0.5f)); } } protected int quantize16(float sample) { if (doDither) { sample+=random.nextFloat()*ditherBits; } if (sample>=32767.0f) { return 32767; } else if (sample<=-32768.0f) { return -32768; } else { return (int) (sample<0?(sample-0.5f):(sample+0.5f)); } } protected int quantize24(float sample) { if (doDither) { sample+=random.nextFloat()*ditherBits; } if (sample>=8388607.0f) { return 8388607; } else if (sample<=-8388608.0f) { return -8388608; } else { return (int) (sample<0?(sample-0.5f):(sample+0.5f)); } } protected int quantize32(float sample) { if (doDither) { sample+=random.nextFloat()*ditherBits; } if (sample>=2147483647.0f) { return 2147483647; } else if (sample<=-2147483648.0f) { return -2147483648; } else { return (int) (sample<0?(sample-0.5f):(sample+0.5f)); } } // should be static and public, but dithering needs class members private void convertFloatToByte(float[] input, int sampleCount, byte[] output, int offset, int bytesPerFrame, int formatType) { //if (TDebug.TraceAudioConverter) { // TDebug.out("FloatSampleBuffer.convertFloatToByte, formatType=" // +"formatType2Str(formatType)); //} // let's see whether dithering is necessary switch (ditherMode) { case DITHER_MODE_AUTOMATIC: doDither=(originalFormatType & F_SAMPLE_WIDTH_MASK)> (formatType & F_SAMPLE_WIDTH_MASK); break; case DITHER_MODE_ON: doDither=true; break; case DITHER_MODE_OFF: doDither=false; break; } if (doDither && random==null) { // create the random number generator for dithering random=new Random(); } int inIndex; int iSample; for (inIndex=0; inIndex<sampleCount; inIndex++) { // do conversion switch (formatType) { case CT_8S: output[offset]=quantize8(input[inIndex]*twoPower7); break; case CT_8U: output[offset]=(byte) (quantize8(input[inIndex]*twoPower7)+128); break; case CT_16SB: iSample=quantize16(input[inIndex]*twoPower15); output[offset]=(byte) (iSample >> 8); output[offset+1]=(byte) (iSample & 0xFF); break; case CT_16SL: iSample=quantize16(input[inIndex]*twoPower15); output[offset+1]=(byte) (iSample >> 8); output[offset]=(byte) (iSample & 0xFF); break; case CT_24SB: iSample=quantize24(input[inIndex]*twoPower23); output[offset]=(byte) (iSample >> 16); output[offset+1]=(byte) ((iSample >>> 8) & 0xFF); output[offset+2]=(byte) (iSample & 0xFF); break; case CT_24SL: iSample=quantize24(input[inIndex]*twoPower23); output[offset+2]=(byte) (iSample >> 16); output[offset+1]=(byte) ((iSample >>> 8) & 0xFF); output[offset]=(byte) (iSample & 0xFF); break; case CT_32SB: iSample=quantize32(input[inIndex]*twoPower31); output[offset]=(byte) (iSample >> 24); output[offset+1]=(byte) ((iSample >>> 16) & 0xFF); output[offset+2]=(byte) ((iSample >>> 8) & 0xFF); output[offset+3]=(byte) (iSample & 0xFF); break; case CT_32SL: iSample=quantize32(input[inIndex]*twoPower31); output[offset+3]=(byte) (iSample >> 24); output[offset+2]=(byte) ((iSample >>> 16) & 0xFF); output[offset+1]=(byte) ((iSample >>> 8) & 0xFF); output[offset]=(byte) (iSample & 0xFF); break; default: throw new IllegalArgumentException ("Unsupported formatType="+formatType); } offset+=bytesPerFrame; } } /** * Debugging function */ private static String formatType2Str(int formatType) { String res=""+formatType+": "; switch (formatType & F_SAMPLE_WIDTH_MASK) { case F_8: res+="8bit"; break; case F_16: res+="16bit"; break; case F_24: res+="24bit"; break; case F_32: res+="32bit"; break; } res+=((formatType & F_SIGNED)==F_SIGNED)?" signed":" unsigned"; if ((formatType & F_SAMPLE_WIDTH_MASK)!=F_8) { res+=((formatType & F_BIGENDIAN)==F_BIGENDIAN)? " big endian":" little endian"; } return res; } } /*** FloatSampleBuffer.java ***/