/* JOrbis * Copyright (C) 2000 ymnk, JCraft,Inc. * * Written by: 2000 ymnk<ymnk@jcraft.com> * * Many thanks to * Monty <monty@xiph.org> and * The XIPHOPHORUS Company http://www.xiph.org/ . * JOrbis has been based on their awesome works, Vorbis codec. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ package com.jcraft.jorbis; import com.jcraft.jogg.*; class CodeBook{ int dim; // codebook dimensions (elements per vector) int entries; // codebook entries StaticCodeBook c=new StaticCodeBook(); float[] valuelist; // list of dim*entries actual entry values int[] codelist; // list of bitstream codewords for each entry DecodeAux decode_tree; // returns the number of bits int encode(int a, Buffer b){ b.write(codelist[a], c.lengthlist[a]); return(c.lengthlist[a]); } // One the encode side, our vector writers are each designed for a // specific purpose, and the encoder is not flexible without modification: // // The LSP vector coder uses a single stage nearest-match with no // interleave, so no step and no error return. This is specced by floor0 // and doesn't change. // // Residue0 encoding interleaves, uses multiple stages, and each stage // peels of a specific amount of resolution from a lattice (thus we want // to match by threshhold, not nearest match). Residue doesn't *have* to // be encoded that way, but to change it, one will need to add more // infrastructure on the encode side (decode side is specced and simpler) // floor0 LSP (single stage, non interleaved, nearest match) // returns entry number and *modifies a* to the quantization value int errorv(float[] a){ int best=best(a,1); for(int k=0;k<dim;k++){ a[k]=valuelist[best*dim+k]; } return(best); } // returns the number of bits and *modifies a* to the quantization value int encodev(int best, float[] a, Buffer b){ for(int k=0;k<dim;k++){ a[k]=valuelist[best*dim+k]; } return(encode(best,b)); } // res0 (multistage, interleave, lattice) // returns the number of bits and *modifies a* to the remainder value int encodevs(float[] a, Buffer b, int step,int addmul){ int best=besterror(a,step,addmul); return(encode(best,b)); } private int[] t=new int[15]; // decodevs_add is synchronized for re-using t. synchronized int decodevs_add(float[]a, int offset, Buffer b, int n){ int step=n/dim; int entry; int i,j,o; if(t.length<step){ t=new int[step]; } for(i = 0; i < step; i++){ entry=decode(b); if(entry==-1)return(-1); t[i]=entry*dim; } for(i=0,o=0;i<dim;i++,o+=step){ for(j=0;j<step;j++){ a[offset+o+j]+=valuelist[t[j]+i]; } } return(0); } int decodev_add(float[]a, int offset, Buffer b,int n){ int i,j,entry; int t; if(dim>8){ for(i=0;i<n;){ entry = decode(b); if(entry==-1)return(-1); t=entry*dim; for(j=0;j<dim;){ a[offset+(i++)]+=valuelist[t+(j++)]; } } } else{ for(i=0;i<n;){ entry=decode(b); if(entry==-1)return(-1); t=entry*dim; j=0; switch(dim){ case 8: a[offset+(i++)]+=valuelist[t+(j++)]; case 7: a[offset+(i++)]+=valuelist[t+(j++)]; case 6: a[offset+(i++)]+=valuelist[t+(j++)]; case 5: a[offset+(i++)]+=valuelist[t+(j++)]; case 4: a[offset+(i++)]+=valuelist[t+(j++)]; case 3: a[offset+(i++)]+=valuelist[t+(j++)]; case 2: a[offset+(i++)]+=valuelist[t+(j++)]; case 1: a[offset+(i++)]+=valuelist[t+(j++)]; case 0: break; } } } return(0); } int decodev_set(float[] a,int offset, Buffer b, int n){ int i,j,entry; int t; for(i=0;i<n;){ entry = decode(b); if(entry==-1)return(-1); t=entry*dim; for(j=0;j<dim;){ a[offset+i++]=valuelist[t+(j++)]; } } return(0); } int decodevv_add(float[][] a, int offset,int ch, Buffer b,int n){ int i,j,k,entry; int chptr=0; //System.out.println("decodevv_add: a="+a+",b="+b+",valuelist="+valuelist); for(i=offset/ch;i<(offset+n)/ch;){ entry = decode(b); if(entry==-1)return(-1); int t = entry*dim; for(j=0;j<dim;j++){ a[chptr++][i]+=valuelist[t+j]; if(chptr==ch){ chptr=0; i++; } } } return(0); } // Decode side is specced and easier, because we don't need to find // matches using different criteria; we simply read and map. There are // two things we need to do 'depending': // // We may need to support interleave. We don't really, but it's // convenient to do it here rather than rebuild the vector later. // // Cascades may be additive or multiplicitive; this is not inherent in // the codebook, but set in the code using the codebook. Like // interleaving, it's easiest to do it here. // stage==0 -> declarative (set the value) // stage==1 -> additive // stage==2 -> multiplicitive // returns the entry number or -1 on eof int decode(Buffer b){ int ptr=0; DecodeAux t=decode_tree; int lok=b.look(t.tabn); //System.err.println(this+" "+t+" lok="+lok+", tabn="+t.tabn); if(lok>=0){ ptr=t.tab[lok]; b.adv(t.tabl[lok]); if(ptr<=0){ return -ptr; } } do{ switch(b.read1()){ case 0: ptr=t.ptr0[ptr]; break; case 1: ptr=t.ptr1[ptr]; break; case -1: default: return(-1); } } while(ptr>0); return(-ptr); } // returns the entry number or -1 on eof int decodevs(float[] a, int index, Buffer b, int step,int addmul){ int entry=decode(b); if(entry==-1)return(-1); switch(addmul){ case -1: for(int i=0,o=0;i<dim;i++,o+=step) a[index+o]=valuelist[entry*dim+i]; break; case 0: for(int i=0,o=0;i<dim;i++,o+=step) a[index+o]+=valuelist[entry*dim+i]; break; case 1: for(int i=0,o=0;i<dim;i++,o+=step) a[index+o]*=valuelist[entry*dim+i]; break; default: //System.err.println("CodeBook.decodeves: addmul="+addmul); } return(entry); } int best(float[] a, int step){ EncodeAuxNearestMatch nt=c.nearest_tree; EncodeAuxThreshMatch tt=c.thresh_tree; int ptr=0; // we assume for now that a thresh tree is the only other possibility if(tt!=null){ int index=0; // find the quant val of each scalar for(int k=0,o=step*(dim-1);k<dim;k++,o-=step){ int i; // linear search the quant list for now; it's small and although // with > 8 entries, it would be faster to bisect, this would be // a misplaced optimization for now for(i=0;i<tt.threshvals-1;i++){ if(a[o]<tt.quantthresh[i]){ break; } } index=(index*tt.quantvals)+tt.quantmap[i]; } // regular lattices are easy :-) if(c.lengthlist[index]>0){ // is this unused? If so, we'll // use a decision tree after all // and fall through return(index); } } if(nt!=null){ // optimized using the decision tree while(true){ float c=0.f; int p=nt.p[ptr]; int q=nt.q[ptr]; for(int k=0,o=0;k<dim;k++,o+=step){ c+=(valuelist[p+k]-valuelist[q+k])* (a[o]-(valuelist[p+k]+valuelist[q+k])*.5); } if(c>0.){ // in A ptr= -nt.ptr0[ptr]; } else{ // in B ptr= -nt.ptr1[ptr]; } if(ptr<=0)break; } return(-ptr); } // brute force it! { int besti=-1; float best=0.f; int e=0; for(int i=0;i<entries;i++){ if(c.lengthlist[i]>0){ float _this=dist(dim, valuelist, e, a, step); if(besti==-1 || _this<best){ best=_this; besti=i; } } e+=dim; } return(besti); } } // returns the entry number and *modifies a* to the remainder value int besterror(float[] a, int step, int addmul){ int best=best(a,step); switch(addmul){ case 0: for(int i=0,o=0;i<dim;i++,o+=step) a[o]-=valuelist[best*dim+i]; break; case 1: for(int i=0,o=0;i<dim;i++,o+=step){ float val=valuelist[best*dim+i]; if(val==0){ a[o]=0; }else{ a[o]/=val; } } break; } return(best); } void clear(){ // static book is not cleared; we're likely called on the lookup and // the static codebook belongs to the info struct //if(decode_tree!=null){ // free(b->decode_tree->ptr0); // free(b->decode_tree->ptr1); // memset(b->decode_tree,0,sizeof(decode_aux)); // free(b->decode_tree); //} //if(valuelist!=null)free(b->valuelist); //if(codelist!=null)free(b->codelist); //memset(b,0,sizeof(codebook)); } private static float dist(int el, float[] ref, int index, float[] b, int step){ float acc=(float)0.; for(int i=0; i<el; i++){ float val=(ref[index+i]-b[i*step]); acc+=val*val; } return(acc); } /* int init_encode(StaticCodeBook s){ //memset(c,0,sizeof(codebook)); c=s; entries=s.entries; dim=s.dim; codelist=make_words(s.lengthlist, s.entries); valuelist=s.unquantize(); return(0); } */ int init_decode(StaticCodeBook s){ //memset(c,0,sizeof(codebook)); c=s; entries=s.entries; dim=s.dim; valuelist=s.unquantize(); decode_tree=make_decode_tree(); if(decode_tree==null){ //goto err_out; clear(); return(-1); } return(0); // err_out: // vorbis_book_clear(c); // return(-1); } // given a list of word lengths, generate a list of codewords. Works // for length ordered or unordered, always assigns the lowest valued // codewords first. Extended to handle unused entries (length 0) static int[] make_words(int[] l, int n){ int[] marker=new int[33]; int[] r=new int[n]; //memset(marker,0,sizeof(marker)); for(int i=0;i<n;i++){ int length=l[i]; if(length>0){ int entry=marker[length]; // when we claim a node for an entry, we also claim the nodes // below it (pruning off the imagined tree that may have dangled // from it) as well as blocking the use of any nodes directly // above for leaves // update ourself if(length<32 && (entry>>>length)!=0){ // error condition; the lengths must specify an overpopulated tree //free(r); return(null); } r[i]=entry; // Look to see if the next shorter marker points to the node // above. if so, update it and repeat. { for(int j=length;j>0;j--){ if((marker[j]&1)!=0){ // have to jump branches if(j==1)marker[1]++; else marker[j]=marker[j-1]<<1; break; // invariant says next upper marker would already // have been moved if it was on the same path } marker[j]++; } } // prune the tree; the implicit invariant says all the longer // markers were dangling from our just-taken node. Dangle them // from our *new* node. for(int j=length+1;j<33;j++){ if((marker[j]>>>1) == entry){ entry=marker[j]; marker[j]=marker[j-1]<<1; } else{ break; } } } } // bitreverse the words because our bitwise packer/unpacker is LSb // endian for(int i=0;i<n;i++){ int temp=0; for(int j=0;j<l[i];j++){ temp<<=1; temp|=(r[i]>>>j)&1; } r[i]=temp; } return(r); } // build the decode helper tree from the codewords DecodeAux make_decode_tree(){ int top=0; DecodeAux t=new DecodeAux(); int[] ptr0=t.ptr0=new int[entries*2]; int[] ptr1=t.ptr1=new int[entries*2]; int[] codelist=make_words(c.lengthlist, c.entries); if(codelist==null)return(null); t.aux=entries*2; for(int i=0;i<entries;i++){ if(c.lengthlist[i]>0){ int ptr=0; int j; for(j=0;j<c.lengthlist[i]-1;j++){ int bit=(codelist[i]>>>j)&1; if(bit==0){ if(ptr0[ptr]==0){ ptr0[ptr]=++top; } ptr=ptr0[ptr]; } else{ if(ptr1[ptr]==0){ ptr1[ptr]= ++top; } ptr=ptr1[ptr]; } } if(((codelist[i]>>>j)&1)==0){ ptr0[ptr]=-i; } else{ ptr1[ptr]=-i; } } } //free(codelist); t.tabn = ilog(entries)-4; if(t.tabn<5)t.tabn=5; int n = 1<<t.tabn; t.tab = new int[n]; t.tabl = new int[n]; for(int i = 0; i < n; i++){ int p = 0; int j=0; for(j = 0; j < t.tabn && (p > 0 || j == 0); j++){ if ((i&(1<<j))!=0){ p = ptr1[p]; } else{ p = ptr0[p]; } } t.tab[i]=p; // -code t.tabl[i]=j; // length } return(t); } private static int ilog(int v){ int ret=0; while(v!=0){ ret++; v>>>=1; } return(ret); } /* // TEST // Simple enough; pack a few candidate codebooks, unpack them. Code a // number of vectors through (keeping track of the quantized values), // and decode using the unpacked book. quantized version of in should // exactly equal out //#include "vorbis/book/lsp20_0.vqh" //#include "vorbis/book/lsp32_0.vqh" //#include "vorbis/book/res0_1a.vqh" static final int TESTSIZE=40; static float[] test1={ 0.105939, 0.215373, 0.429117, 0.587974, 0.181173, 0.296583, 0.515707, 0.715261, 0.162327, 0.263834, 0.342876, 0.406025, 0.103571, 0.223561, 0.368513, 0.540313, 0.136672, 0.395882, 0.587183, 0.652476, 0.114338, 0.417300, 0.525486, 0.698679, 0.147492, 0.324481, 0.643089, 0.757582, 0.139556, 0.215795, 0.324559, 0.399387, 0.120236, 0.267420, 0.446940, 0.608760, 0.115587, 0.287234, 0.571081, 0.708603, }; static float[] test2={ 0.088654, 0.165742, 0.279013, 0.395894, 0.110812, 0.218422, 0.283423, 0.371719, 0.136985, 0.186066, 0.309814, 0.381521, 0.123925, 0.211707, 0.314771, 0.433026, 0.088619, 0.192276, 0.277568, 0.343509, 0.068400, 0.132901, 0.223999, 0.302538, 0.202159, 0.306131, 0.360362, 0.416066, 0.072591, 0.178019, 0.304315, 0.376516, 0.094336, 0.188401, 0.325119, 0.390264, 0.091636, 0.223099, 0.282899, 0.375124, }; static float[] test3={ 0,1,-2,3,4,-5,6,7,8,9, 8,-2,7,-1,4,6,8,3,1,-9, 10,11,12,13,14,15,26,17,18,19, 30,-25,-30,-1,-5,-32,4,3,-2,0}; // static_codebook *testlist[]={&_vq_book_lsp20_0, // &_vq_book_lsp32_0, // &_vq_book_res0_1a,NULL}; static[][] float testvec={test1,test2,test3}; static void main(String[] arg){ Buffer write=new Buffer(); Buffer read=new Buffer(); int ptr=0; write.writeinit(); System.err.println("Testing codebook abstraction...:"); while(testlist[ptr]!=null){ CodeBook c=new CodeBook(); StaticCodeBook s=new StaticCodeBook();; float *qv=alloca(sizeof(float)*TESTSIZE); float *iv=alloca(sizeof(float)*TESTSIZE); memcpy(qv,testvec[ptr],sizeof(float)*TESTSIZE); memset(iv,0,sizeof(float)*TESTSIZE); System.err.print("\tpacking/coding "+ptr+"... "); // pack the codebook, write the testvector write.reset(); vorbis_book_init_encode(&c,testlist[ptr]); // get it into memory // we can write vorbis_staticbook_pack(testlist[ptr],&write); System.err.print("Codebook size "+write.bytes()+" bytes... "); for(int i=0;i<TESTSIZE;i+=c.dim){ vorbis_book_encodev(&c,qv+i,&write); } c.clear(); System.err.print("OK.\n"); System.err.print("\tunpacking/decoding "+ptr+"... "); // transfer the write data to a read buffer and unpack/read _oggpack_readinit(&read,_oggpack_buffer(&write),_oggpack_bytes(&write)); if(s.unpack(read)){ System.err.print("Error unpacking codebook.\n"); System.exit(1); } if(vorbis_book_init_decode(&c,&s)){ System.err.print("Error initializing codebook.\n"); System.exit(1); } for(int i=0;i<TESTSIZE;i+=c.dim){ if(vorbis_book_decodevs(&c,iv+i,&read,1,-1)==-1){ System.err.print("Error reading codebook test data (EOP).\n"); System.exit(1); } } for(int i=0;i<TESTSIZE;i++){ if(fabs(qv[i]-iv[i])>.000001){ System.err.print("read ("+iv[i]+") != written ("+qv[i]+") at position ("+i+")\n"); System.exit(1); } } System.err.print("OK\n"); ptr++; } // The above is the trivial stuff; // now try unquantizing a log scale codebook } */ } class DecodeAux{ int[] tab; int[] tabl; int tabn; int[] ptr0; int[] ptr1; int aux; // number of tree entries }