/* * This file is part of the Jikes RVM project (http://jikesrvm.org). * * This file is licensed to You under the Eclipse Public License (EPL); * You may not use this file except in compliance with the License. You * may obtain a copy of the License at * * http://www.opensource.org/licenses/eclipse-1.0.php * * See the COPYRIGHT.txt file distributed with this work for information * regarding copyright ownership. */ package org.mmtk.plan.refcount; import org.mmtk.plan.StopTheWorldMutator; import org.mmtk.plan.refcount.backuptrace.BTSweepImmortalScanner; import org.mmtk.policy.ExplicitFreeListLocal; import org.mmtk.policy.ExplicitFreeListSpace; import org.mmtk.policy.LargeObjectLocal; import org.mmtk.policy.Space; import org.mmtk.utility.alloc.Allocator; import org.mmtk.utility.deque.ObjectReferenceDeque; import org.mmtk.vm.VM; import org.vmmagic.pragma.*; import org.vmmagic.unboxed.*; /** * This class implements the mutator context for a simple reference counting collector. */ @Uninterruptible public class RCBaseMutator extends StopTheWorldMutator { /************************************************************************ * Instance fields */ private final ExplicitFreeListLocal rc; private final LargeObjectLocal rclos; private final ObjectReferenceDeque modBuffer; private final RCDecBuffer decBuffer; private final BTSweepImmortalScanner btSweepImmortal; /************************************************************************ * * Initialization */ /** * Constructor. One instance is created per physical processor. */ public RCBaseMutator() { rc = new ExplicitFreeListLocal(RCBase.rcSpace); rclos = new LargeObjectLocal(RCBase.rcloSpace); modBuffer = new ObjectReferenceDeque("mod", global().modPool); decBuffer = new RCDecBuffer(global().decPool); btSweepImmortal = new BTSweepImmortalScanner(); } /**************************************************************************** * * Mutator-time allocation */ /** * Allocate memory for an object. * * @param bytes The number of bytes required for the object. * @param align Required alignment for the object. * @param offset Offset associated with the alignment. * @param allocator The allocator associated with this request. * @param site Allocation site * @return The address of the newly allocated memory. */ @Inline public Address alloc(int bytes, int align, int offset, int allocator, int site) { switch (allocator) { case RCBase.ALLOC_DEFAULT: case RCBase.ALLOC_NON_MOVING: case RCBase.ALLOC_CODE: return rc.alloc(bytes, align, offset); case RCBase.ALLOC_LOS: case RCBase.ALLOC_PRIMITIVE_LOS: case RCBase.ALLOC_LARGE_CODE: return rclos.alloc(bytes, align, offset); case RCBase.ALLOC_IMMORTAL: return super.alloc(bytes, align, offset, allocator, site); default: VM.assertions.fail("Allocator not understood by RC"); return Address.zero(); } } /** * Perform post-allocation actions. For many allocators none are * required. * * @param ref The newly allocated object * @param typeRef the type reference for the instance being created * @param bytes The size of the space to be allocated (in bytes) * @param allocator The allocator number to be used for this allocation */ @Inline public void postAlloc(ObjectReference ref, ObjectReference typeRef, int bytes, int allocator) { switch (allocator) { case RCBase.ALLOC_DEFAULT: case RCBase.ALLOC_NON_MOVING: modBuffer.push(ref); case RCBase.ALLOC_CODE: decBuffer.push(ref); RCHeader.initializeHeader(ref, true); ExplicitFreeListSpace.unsyncSetLiveBit(ref); break; case RCBase.ALLOC_LOS: modBuffer.push(ref); case RCBase.ALLOC_PRIMITIVE_LOS: case RCBase.ALLOC_LARGE_CODE: decBuffer.push(ref); RCHeader.initializeHeader(ref, true); RCBase.rcloSpace.initializeHeader(ref, true); return; case RCBase.ALLOC_IMMORTAL: modBuffer.push(ref); decBuffer.push(ref); RCHeader.initializeHeader(ref, true); return; default: VM.assertions.fail("Allocator not understood by RC"); return; } } /** * Return the allocator instance associated with a space * <code>space</code>, for this plan instance. * * @param space The space for which the allocator instance is desired. * @return The allocator instance associated with this plan instance * which is allocating into <code>space</code>, or <code>null</code> * if no appropriate allocator can be established. */ public Allocator getAllocatorFromSpace(Space space) { if (space == RCBase.rcSpace) return rc; if (space == RCBase.rcloSpace) return rclos; return super.getAllocatorFromSpace(space); } /**************************************************************************** * * Collection */ /** * Perform a per-mutator collection phase. * * @param phaseId The collection phase to perform * @param primary perform any single-threaded local activities. */ public void collectionPhase(short phaseId, boolean primary) { if (phaseId == RCBase.PREPARE) { rc.prepare(); return; } if (phaseId == RCBase.PROCESS_MODBUFFER) { modBuffer.flushLocal(); return; } if (phaseId == RCBase.PROCESS_DECBUFFER) { decBuffer.flushLocal(); return; } if (phaseId == RCBase.RELEASE) { if (RCBase.CC_BACKUP_TRACE && RCBase.performCycleCollection) { immortal.linearScan(btSweepImmortal); } rc.release(); if (VM.VERIFY_ASSERTIONS) VM.assertions._assert(modBuffer.isEmpty()); if (VM.VERIFY_ASSERTIONS) VM.assertions._assert(decBuffer.isEmpty()); return; } super.collectionPhase(phaseId, primary); } /** * Flush per-mutator remembered sets into the global remset pool. */ public final void flushRememberedSets() { decBuffer.flushLocal(); modBuffer.flushLocal(); assertRemsetsFlushed(); } /** * Assert that the remsets have been flushed. This is critical to * correctness. We need to maintain the invariant that remset entries * do not accrue during GC. If the host JVM generates barrier entires * it is its own responsibility to ensure that they are flushed before * returning to MMTk. */ public final void assertRemsetsFlushed() { if (VM.VERIFY_ASSERTIONS) { VM.assertions._assert(decBuffer.isFlushed()); VM.assertions._assert(modBuffer.isFlushed()); } } /** * Flush mutator context, in response to a requestMutatorFlush. * Also called by the default implementation of deinitMutator. */ @Override public void flush() { super.flush(); rc.flush(); } /**************************************************************************** * * Write barriers. */ /** * A new reference is about to be created. Take appropriate write * barrier actions.<p> * * <b>By default do nothing, override if appropriate.</b> * * @param src The object into which the new reference will be stored * @param slot The address into which the new reference will be * stored. * @param tgt The target of the new reference * @param metaDataA A value that assists the host VM in creating a store * @param metaDataB A value that assists the host VM in creating a store * @param mode The context in which the store occurred */ @Inline public void objectReferenceWrite(ObjectReference src, Address slot, ObjectReference tgt, Word metaDataA, Word metaDataB, int mode) { if (RCHeader.logRequired(src)) { coalescingWriteBarrierSlow(src); } VM.barriers.objectReferenceWrite(src,tgt,metaDataA, metaDataB, mode); } /** * Attempt to atomically exchange the value in the given slot * with the passed replacement value. If a new reference is * created, we must then take appropriate write barrier actions.<p> * * <b>By default do nothing, override if appropriate.</b> * * @param src The object into which the new reference will be stored * @param slot The address into which the new reference will be * stored. * @param old The old reference to be swapped out * @param tgt The target of the new reference * @param metaDataA A value that assists the host VM in creating a store * @param metaDataB A value that assists the host VM in creating a store * @param mode The context in which the store occured * @return True if the swap was successful. */ @Inline public boolean objectReferenceTryCompareAndSwap(ObjectReference src, Address slot, ObjectReference old, ObjectReference tgt, Word metaDataA, Word metaDataB, int mode) { if (RCHeader.logRequired(src)) { coalescingWriteBarrierSlow(src); } return VM.barriers.objectReferenceTryCompareAndSwap(src,old,tgt,metaDataA,metaDataB,mode); } /** * A number of references are about to be copied from object * <code>src</code> to object <code>dst</code> (as in an array * copy). Thus, <code>dst</code> is the mutated object. Take * appropriate write barrier actions.<p> * * @param src The source of the values to be copied * @param srcOffset The offset of the first source address, in * bytes, relative to <code>src</code> (in principle, this could be * negative). * @param dst The mutated object, i.e. the destination of the copy. * @param dstOffset The offset of the first destination address, in * bytes relative to <code>tgt</code> (in principle, this could be * negative). * @param bytes The size of the region being copied, in bytes. * @return True if the update was performed by the barrier, false if * left to the caller (always false in this case). */ @Inline public boolean objectReferenceBulkCopy(ObjectReference src, Offset srcOffset, ObjectReference dst, Offset dstOffset, int bytes) { if (RCHeader.logRequired(dst)) { coalescingWriteBarrierSlow(dst); } return false; } /** * Slow path of the coalescing write barrier. * * <p> Attempt to log the source object. If successful in racing for * the log bit, push an entry into the modified buffer and add a * decrement buffer entry for each referent object (in the RC space) * before setting the header bit to indicate that it has finished * logging (allowing others in the race to continue). * * @param srcObj The object being mutated */ @NoInline private void coalescingWriteBarrierSlow(ObjectReference srcObj) { if (RCHeader.attemptToLog(srcObj)) { modBuffer.push(srcObj); decBuffer.processChildren(srcObj); RCHeader.makeLogged(srcObj); } } /**************************************************************************** * * Miscellaneous */ /** @return The active global plan as an <code>RC</code> instance. */ @Inline private static RCBase global() { return (RCBase) VM.activePlan.global(); } }