/* -*-mode:java; c-basic-offset:2; indent-tabs-mode:nil -*- */ /* JOrbis * Copyright (C) 2000 ymnk, JCraft,Inc. * * Written by: 2000 ymnk<ymnk@jcraft.com> * * Many thanks to * Monty <monty@xiph.org> and * The XIPHOPHORUS Company http://www.xiph.org/ . * JOrbis has been based on their awesome works, Vorbis codec. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ package sound.jcraft.jorbis; import sound.jcraft.jogg.Buffer; class Mapping0 extends FuncMapping{ static int seq=0; void free_info(Object imap){ }; void free_look(Object imap){ } Object look(DspState vd, InfoMode vm, Object m){ //System.err.println("Mapping0.look"); Info vi=vd.vi; LookMapping0 look=new LookMapping0(); InfoMapping0 info=look.map=(InfoMapping0)m; look.mode=vm; look.time_look=new Object[info.submaps]; look.floor_look=new Object[info.submaps]; look.residue_look=new Object[info.submaps]; look.time_func=new FuncTime[info.submaps]; look.floor_func=new FuncFloor[info.submaps]; look.residue_func=new FuncResidue[info.submaps]; for(int i=0; i<info.submaps; i++){ int timenum=info.timesubmap[i]; int floornum=info.floorsubmap[i]; int resnum=info.residuesubmap[i]; look.time_func[i]=FuncTime.time_P[vi.time_type[timenum]]; look.time_look[i]=look.time_func[i].look(vd, vm, vi.time_param[timenum]); look.floor_func[i]=FuncFloor.floor_P[vi.floor_type[floornum]]; look.floor_look[i]=look.floor_func[i].look(vd, vm, vi.floor_param[floornum]); look.residue_func[i]=FuncResidue.residue_P[vi.residue_type[resnum]]; look.residue_look[i]=look.residue_func[i].look(vd, vm, vi.residue_param[resnum]); } if(vi.psys!=0&&vd.analysisp!=0){ // ?? } look.ch=vi.channels; return (look); } void pack(Info vi, Object imap, Buffer opb){ InfoMapping0 info=(InfoMapping0)imap; /* another 'we meant to do it this way' hack... up to beta 4, we packed 4 binary zeros here to signify one submapping in use. We now redefine that to mean four bitflags that indicate use of deeper features; bit0:submappings, bit1:coupling, bit2,3:reserved. This is backward compatable with all actual uses of the beta code. */ if(info.submaps>1){ opb.write(1, 1); opb.write(info.submaps-1, 4); } else{ opb.write(0, 1); } if(info.coupling_steps>0){ opb.write(1, 1); opb.write(info.coupling_steps-1, 8); for(int i=0; i<info.coupling_steps; i++){ opb.write(info.coupling_mag[i], Util.ilog2(vi.channels)); opb.write(info.coupling_ang[i], Util.ilog2(vi.channels)); } } else{ opb.write(0, 1); } opb.write(0, 2); /* 2,3:reserved */ /* we don't write the channel submappings if we only have one... */ if(info.submaps>1){ for(int i=0; i<vi.channels; i++) opb.write(info.chmuxlist[i], 4); } for(int i=0; i<info.submaps; i++){ opb.write(info.timesubmap[i], 8); opb.write(info.floorsubmap[i], 8); opb.write(info.residuesubmap[i], 8); } } // also responsible for range checking Object unpack(Info vi, Buffer opb){ InfoMapping0 info=new InfoMapping0(); if(opb.read(1)!=0){ info.submaps=opb.read(4)+1; } else{ info.submaps=1; } if(opb.read(1)!=0){ info.coupling_steps=opb.read(8)+1; for(int i=0; i<info.coupling_steps; i++){ int testM=info.coupling_mag[i]=opb.read(Util.ilog2(vi.channels)); int testA=info.coupling_ang[i]=opb.read(Util.ilog2(vi.channels)); if(testM<0||testA<0||testM==testA||testM>=vi.channels ||testA>=vi.channels){ //goto err_out; info.free(); return (null); } } } if(opb.read(2)>0){ /* 2,3:reserved */ info.free(); return (null); } if(info.submaps>1){ for(int i=0; i<vi.channels; i++){ info.chmuxlist[i]=opb.read(4); if(info.chmuxlist[i]>=info.submaps){ info.free(); return (null); } } } for(int i=0; i<info.submaps; i++){ info.timesubmap[i]=opb.read(8); if(info.timesubmap[i]>=vi.times){ info.free(); return (null); } info.floorsubmap[i]=opb.read(8); if(info.floorsubmap[i]>=vi.floors){ info.free(); return (null); } info.residuesubmap[i]=opb.read(8); if(info.residuesubmap[i]>=vi.residues){ info.free(); return (null); } } return info; } float[][] pcmbundle=null; int[] zerobundle=null; int[] nonzero=null; Object[] floormemo=null; synchronized int inverse(Block vb, Object l){ DspState vd=vb.vd; Info vi=vd.vi; LookMapping0 look=(LookMapping0)l; InfoMapping0 info=look.map; InfoMode mode=look.mode; int n=vb.pcmend=vi.blocksizes[vb.W]; float[] window=vd.window[vb.W][vb.lW][vb.nW][mode.windowtype]; if(pcmbundle==null||pcmbundle.length<vi.channels){ pcmbundle=new float[vi.channels][]; nonzero=new int[vi.channels]; zerobundle=new int[vi.channels]; floormemo=new Object[vi.channels]; } // time domain information decode (note that applying the // information would have to happen later; we'll probably add a // function entry to the harness for that later // NOT IMPLEMENTED // recover the spectral envelope; store it in the PCM vector for now for(int i=0; i<vi.channels; i++){ float[] pcm=vb.pcm[i]; int submap=info.chmuxlist[i]; floormemo[i]=look.floor_func[submap].inverse1(vb, look.floor_look[submap], floormemo[i]); if(floormemo[i]!=null){ nonzero[i]=1; } else{ nonzero[i]=0; } for(int j=0; j<n/2; j++){ pcm[j]=0; } } for(int i=0; i<info.coupling_steps; i++){ if(nonzero[info.coupling_mag[i]]!=0||nonzero[info.coupling_ang[i]]!=0){ nonzero[info.coupling_mag[i]]=1; nonzero[info.coupling_ang[i]]=1; } } // recover the residue, apply directly to the spectral envelope for(int i=0; i<info.submaps; i++){ int ch_in_bundle=0; for(int j=0; j<vi.channels; j++){ if(info.chmuxlist[j]==i){ if(nonzero[j]!=0){ zerobundle[ch_in_bundle]=1; } else{ zerobundle[ch_in_bundle]=0; } pcmbundle[ch_in_bundle++]=vb.pcm[j]; } } look.residue_func[i].inverse(vb, look.residue_look[i], pcmbundle, zerobundle, ch_in_bundle); } for(int i=info.coupling_steps-1; i>=0; i--){ float[] pcmM=vb.pcm[info.coupling_mag[i]]; float[] pcmA=vb.pcm[info.coupling_ang[i]]; for(int j=0; j<n/2; j++){ float mag=pcmM[j]; float ang=pcmA[j]; if(mag>0){ if(ang>0){ pcmM[j]=mag; pcmA[j]=mag-ang; } else{ pcmA[j]=mag; pcmM[j]=mag+ang; } } else{ if(ang>0){ pcmM[j]=mag; pcmA[j]=mag+ang; } else{ pcmA[j]=mag; pcmM[j]=mag-ang; } } } } // /* compute and apply spectral envelope */ for(int i=0; i<vi.channels; i++){ float[] pcm=vb.pcm[i]; int submap=info.chmuxlist[i]; look.floor_func[submap].inverse2(vb, look.floor_look[submap], floormemo[i], pcm); } // transform the PCM data; takes PCM vector, vb; modifies PCM vector // only MDCT right now.... for(int i=0; i<vi.channels; i++){ float[] pcm=vb.pcm[i]; //_analysis_output("out",seq+i,pcm,n/2,0,0); ((Mdct)vd.transform[vb.W][0]).backward(pcm, pcm); } // now apply the decoded pre-window time information // NOT IMPLEMENTED // window the data for(int i=0; i<vi.channels; i++){ float[] pcm=vb.pcm[i]; if(nonzero[i]!=0){ for(int j=0; j<n; j++){ pcm[j]*=window[j]; } } else{ for(int j=0; j<n; j++){ pcm[j]=0.f; } } } // now apply the decoded post-window time information // NOT IMPLEMENTED // all done! return (0); } class InfoMapping0{ int submaps; // <= 16 int[] chmuxlist=new int[256]; // up to 256 channels in a Vorbis stream int[] timesubmap=new int[16]; // [mux] int[] floorsubmap=new int[16]; // [mux] submap to floors int[] residuesubmap=new int[16];// [mux] submap to residue int[] psysubmap=new int[16]; // [mux]; encode only int coupling_steps; int[] coupling_mag=new int[256]; int[] coupling_ang=new int[256]; void free(){ chmuxlist=null; timesubmap=null; floorsubmap=null; residuesubmap=null; psysubmap=null; coupling_mag=null; coupling_ang=null; } } class LookMapping0{ InfoMode mode; InfoMapping0 map; Object[] time_look; Object[] floor_look; Object[] floor_state; Object[] residue_look; PsyLook[] psy_look; FuncTime[] time_func; FuncFloor[] floor_func; FuncResidue[] residue_func; int ch; float[][] decay; int lastframe; // if a different mode is called, we need to // invalidate decay and floor state } }