/* * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * */ package org.apache.cassandra.utils.concurrent; import java.lang.ref.PhantomReference; import java.lang.ref.Reference; import java.lang.ref.ReferenceQueue; import java.lang.ref.WeakReference; import java.lang.reflect.Field; import java.lang.reflect.Modifier; import java.util.*; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicIntegerFieldUpdater; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import com.google.common.annotations.VisibleForTesting; import com.google.common.base.Preconditions; import org.apache.cassandra.concurrent.NamedThreadFactory; import org.apache.cassandra.db.ColumnFamilyStore; import org.apache.cassandra.db.Keyspace; import org.apache.cassandra.db.lifecycle.View; import org.apache.cassandra.io.sstable.format.SSTableReader; import org.apache.cassandra.io.util.Memory; import org.apache.cassandra.io.util.SafeMemory; import org.apache.cassandra.utils.NoSpamLogger; import org.apache.cassandra.utils.Pair; import org.cliffc.high_scale_lib.NonBlockingHashMap; import static java.util.Collections.emptyList; import static org.apache.cassandra.utils.Throwables.maybeFail; import static org.apache.cassandra.utils.Throwables.merge; /** * An object that needs ref counting does the two following: * - defines a Tidy object that will cleanup once it's gone, * (this must retain no references to the object we're tracking (only its resources and how to clean up)) * Then, one of two options: * 1) Construct a Ref directly pointing to it, and always use this Ref; or * 2) * - implements RefCounted * - encapsulates a Ref, we'll call selfRef, to which it proxies all calls to RefCounted behaviours * - users must ensure no references to the selfRef leak, or are retained outside of a method scope. * (to ensure the selfRef is collected with the object, so that leaks may be detected and corrected) * * This class' functionality is achieved by what may look at first glance like a complex web of references, * but boils down to: * * {@code * Target --> selfRef --> [Ref.State] <--> Ref.GlobalState --> Tidy * ^ * | * Ref ---------------------------------------- * | * Global ------------------------------------- * } * So that, if Target is collected, Impl is collected and, hence, so is selfRef. * * Once ref or selfRef are collected, the paired Ref.State's release method is called, which if it had * not already been called will update Ref.GlobalState and log an error. * * Once the Ref.GlobalState has been completely released, the Tidy method is called and it removes the global reference * to itself so it may also be collected. */ public final class Ref<T> implements RefCounted<T> { static final Logger logger = LoggerFactory.getLogger(Ref.class); public static final boolean DEBUG_ENABLED = System.getProperty("cassandra.debugrefcount", "false").equalsIgnoreCase("true"); final State state; final T referent; public Ref(T referent, Tidy tidy) { this.state = new State(new GlobalState(tidy), this, referenceQueue); this.referent = referent; } Ref(T referent, GlobalState state) { this.state = new State(state, this, referenceQueue); this.referent = referent; } /** * Must be called exactly once, when the logical operation for which this Ref was created has terminated. * Failure to abide by this contract will result in an error (eventually) being reported, assuming a * hard reference to the resource it managed is not leaked. */ public void release() { state.release(false); } public Throwable ensureReleased(Throwable accumulate) { return state.ensureReleased(accumulate); } public void ensureReleased() { maybeFail(state.ensureReleased(null)); } public void close() { ensureReleased(); } public T get() { state.assertNotReleased(); return referent; } public Ref<T> tryRef() { return state.globalState.ref() ? new Ref<>(referent, state.globalState) : null; } public Ref<T> ref() { Ref<T> ref = tryRef(); // TODO: print the last release as well as the release here if (ref == null) state.assertNotReleased(); return ref; } public String printDebugInfo() { if (DEBUG_ENABLED) { state.debug.log(state.toString()); return "Memory was freed by " + state.debug.deallocateThread; } return "Memory was freed"; } /** * A convenience method for reporting: * @return the number of currently extant references globally, including the shared reference */ public int globalCount() { return state.globalState.count(); } // similar to Ref.GlobalState, but tracks only the management of each unique ref created to the managed object // ensures it is only released once, and that it is always released static final class State extends PhantomReference<Ref> { final Debug debug = DEBUG_ENABLED ? new Debug() : null; final GlobalState globalState; private volatile int released; private static final AtomicIntegerFieldUpdater<State> releasedUpdater = AtomicIntegerFieldUpdater.newUpdater(State.class, "released"); public State(final GlobalState globalState, Ref reference, ReferenceQueue<? super Ref> q) { super(reference, q); this.globalState = globalState; globalState.register(this); } void assertNotReleased() { if (DEBUG_ENABLED && released == 1) debug.log(toString()); assert released == 0; } Throwable ensureReleased(Throwable accumulate) { if (releasedUpdater.getAndSet(this, 1) == 0) { accumulate = globalState.release(this, accumulate); if (DEBUG_ENABLED) debug.deallocate(); } return accumulate; } void release(boolean leak) { if (!releasedUpdater.compareAndSet(this, 0, 1)) { if (!leak) { String id = this.toString(); logger.error("BAD RELEASE: attempted to release a reference ({}) that has already been released", id); if (DEBUG_ENABLED) debug.log(id); throw new IllegalStateException("Attempted to release a reference that has already been released"); } return; } Throwable fail = globalState.release(this, null); if (leak) { String id = this.toString(); logger.error("LEAK DETECTED: a reference ({}) to {} was not released before the reference was garbage collected", id, globalState); if (DEBUG_ENABLED) debug.log(id); } else if (DEBUG_ENABLED) { debug.deallocate(); } if (fail != null) logger.error("Error when closing {}", globalState, fail); } } static final class Debug { String allocateThread, deallocateThread; StackTraceElement[] allocateTrace, deallocateTrace; Debug() { Thread thread = Thread.currentThread(); allocateThread = thread.toString(); allocateTrace = thread.getStackTrace(); } synchronized void deallocate() { Thread thread = Thread.currentThread(); deallocateThread = thread.toString(); deallocateTrace = thread.getStackTrace(); } synchronized void log(String id) { logger.error("Allocate trace {}:\n{}", id, print(allocateThread, allocateTrace)); if (deallocateThread != null) logger.error("Deallocate trace {}:\n{}", id, print(deallocateThread, deallocateTrace)); } String print(String thread, StackTraceElement[] trace) { StringBuilder sb = new StringBuilder(); sb.append(thread); sb.append("\n"); for (StackTraceElement element : trace) { sb.append("\tat "); sb.append(element ); sb.append("\n"); } return sb.toString(); } } // the object that manages the actual cleaning up; this does not reference the target object // so that we can detect when references are lost to the resource itself, and still cleanup afterwards // the Tidy object MUST NOT contain any references to the object we are managing static final class GlobalState { // we need to retain a reference to each of the PhantomReference instances // we are using to track individual refs private final Collection<State> locallyExtant = new ConcurrentLinkedDeque<>(); // the number of live refs private final AtomicInteger counts = new AtomicInteger(); // the object to call to cleanup when our refs are all finished with private final Tidy tidy; GlobalState(Tidy tidy) { this.tidy = tidy; globallyExtant.add(this); } void register(Ref.State ref) { locallyExtant.add(ref); } // increment ref count if not already tidied, and return success/failure boolean ref() { while (true) { int cur = counts.get(); if (cur < 0) return false; if (counts.compareAndSet(cur, cur + 1)) return true; } } // release a single reference, and cleanup if no more are extant Throwable release(Ref.State ref, Throwable accumulate) { locallyExtant.remove(ref); if (-1 == counts.decrementAndGet()) { globallyExtant.remove(this); try { if (tidy != null) tidy.tidy(); } catch (Throwable t) { accumulate = merge(accumulate, t); } } return accumulate; } int count() { return 1 + counts.get(); } public String toString() { if (tidy != null) return tidy.getClass() + "@" + System.identityHashCode(tidy) + ":" + tidy.name(); return "@" + System.identityHashCode(this); } } private static final Class<?>[] concurrentIterableClasses = new Class<?>[] { ConcurrentLinkedQueue.class, ConcurrentLinkedDeque.class, ConcurrentSkipListSet.class, CopyOnWriteArrayList.class, CopyOnWriteArraySet.class, DelayQueue.class, NonBlockingHashMap.class, }; static final Set<Class<?>> concurrentIterables = Collections.newSetFromMap(new IdentityHashMap<>()); private static final Set<GlobalState> globallyExtant = Collections.newSetFromMap(new ConcurrentHashMap<>()); static final ReferenceQueue<Object> referenceQueue = new ReferenceQueue<>(); private static final ExecutorService EXEC = Executors.newFixedThreadPool(1, new NamedThreadFactory("Reference-Reaper")); static final ScheduledExecutorService STRONG_LEAK_DETECTOR = !DEBUG_ENABLED ? null : Executors.newScheduledThreadPool(1, new NamedThreadFactory("Strong-Reference-Leak-Detector")); static { EXEC.execute(new ReferenceReaper()); if (DEBUG_ENABLED) { STRONG_LEAK_DETECTOR.scheduleAtFixedRate(new Visitor(), 1, 15, TimeUnit.MINUTES); STRONG_LEAK_DETECTOR.scheduleAtFixedRate(new StrongLeakDetector(), 2, 15, TimeUnit.MINUTES); } concurrentIterables.addAll(Arrays.asList(concurrentIterableClasses)); } static final class ReferenceReaper implements Runnable { public void run() { try { while (true) { Object obj = referenceQueue.remove(); if (obj instanceof Ref.State) { ((Ref.State) obj).release(true); } } } catch (InterruptedException e) { } finally { EXEC.execute(this); } } } static final Deque<InProgressVisit> inProgressVisitPool = new ArrayDeque<InProgressVisit>(); @SuppressWarnings({ "rawtypes", "unchecked" }) static InProgressVisit newInProgressVisit(Object o, List<Field> fields, Field field, String name) { Preconditions.checkNotNull(o); InProgressVisit ipv = inProgressVisitPool.pollLast(); if (ipv == null) ipv = new InProgressVisit(); ipv.o = o; if (o instanceof Object[]) ipv.collectionIterator = Arrays.asList((Object[])o).iterator(); else if (o instanceof ConcurrentMap) { ipv.isMapIterator = true; ipv.collectionIterator = ((Map)o).entrySet().iterator(); } else if (concurrentIterables.contains(o.getClass()) | o instanceof BlockingQueue) ipv.collectionIterator = ((Iterable)o).iterator(); ipv.fields = fields; ipv.field = field; ipv.name = name; return ipv; } static void returnInProgressVisit(InProgressVisit ipv) { if (inProgressVisitPool.size() > 1024) return; ipv.name = null; ipv.fields = null; ipv.o = null; ipv.fieldIndex = 0; ipv.field = null; ipv.collectionIterator = null; ipv.mapEntryValue = null; ipv.isMapIterator = false; inProgressVisitPool.offer(ipv); } /* * Stack state for walking an object graph. * Field index is the index of the current field being fetched. */ @SuppressWarnings({ "rawtypes"}) static class InProgressVisit { String name; List<Field> fields; Object o; int fieldIndex = 0; Field field; //Need to know if Map.Entry should be returned or traversed as an object boolean isMapIterator; //If o is a ConcurrentMap, BlockingQueue, or Object[], this is populated with an iterator over the contents Iterator<Object> collectionIterator; //If o is a ConcurrentMap the entry set contains keys and values. The key is returned as the first child //And the associated value is stashed here and returned next Object mapEntryValue; private Field nextField() { if (fields.isEmpty()) return null; if (fieldIndex >= fields.size()) return null; Field retval = fields.get(fieldIndex); fieldIndex++; return retval; } Pair<Object, Field> nextChild() throws IllegalAccessException { //If the last child returned was a key from a map, the value from that entry is stashed //so it can be returned next if (mapEntryValue != null) { Pair<Object, Field> retval = Pair.create(mapEntryValue, field); mapEntryValue = null; return retval; } //If o is a ConcurrentMap, BlockingQueue, or Object[], then an iterator will be stored to return the elements if (collectionIterator != null) { if (!collectionIterator.hasNext()) return null; Object nextItem = null; //Find the next non-null element to traverse since returning null will cause the visitor to stop while (collectionIterator.hasNext() && (nextItem = collectionIterator.next()) == null){} if (nextItem != null) { if (isMapIterator & nextItem instanceof Map.Entry) { Map.Entry entry = (Map.Entry)nextItem; mapEntryValue = entry.getValue(); return Pair.create(entry.getKey(), field); } return Pair.create(nextItem, field); } else { return null; } } //Basic traversal of an object by its member fields //Don't return null values as that indicates no more objects while (true) { Field nextField = nextField(); if (nextField == null) return null; //A weak reference isn't strongly reachable //subclasses of WeakReference contain strong references in their fields, so those need to be traversed //The weak reference fields are in the common Reference class base so filter those out if (o instanceof WeakReference & nextField.getDeclaringClass() == Reference.class) continue; Object nextObject = nextField.get(o); if (nextObject != null) return Pair.create(nextField.get(o), nextField); } } @Override public String toString() { return field == null ? name : field.toString() + "-" + o.getClass().getName(); } } static class Visitor implements Runnable { final Deque<InProgressVisit> path = new ArrayDeque<>(); final Set<Object> visited = Collections.newSetFromMap(new IdentityHashMap<>()); @VisibleForTesting int lastVisitedCount; @VisibleForTesting long iterations = 0; GlobalState visiting; Set<GlobalState> haveLoops; public void run() { try { for (GlobalState globalState : globallyExtant) { if (globalState.tidy == null) continue; // do a graph exploration of the GlobalState, since it should be shallow; if it references itself, we have a problem path.clear(); visited.clear(); lastVisitedCount = 0; iterations = 0; visited.add(globalState); visiting = globalState; traverse(globalState.tidy); } } catch (Throwable t) { t.printStackTrace(); } finally { lastVisitedCount = visited.size(); path.clear(); visited.clear(); } } /* * Searches for an indirect strong reference between rootObject and visiting. */ void traverse(final RefCounted.Tidy rootObject) { path.offer(newInProgressVisit(rootObject, getFields(rootObject.getClass()), null, rootObject.name())); InProgressVisit inProgress = null; while (inProgress != null || !path.isEmpty()) { //If necessary fetch the next object to start tracing if (inProgress == null) inProgress = path.pollLast(); try { Pair<Object, Field> p = inProgress.nextChild(); Object child = null; Field field = null; if (p != null) { iterations++; child = p.left; field = p.right; } if (child != null && visited.add(child)) { path.offer(inProgress); inProgress = newInProgressVisit(child, getFields(child.getClass()), field, null); continue; } else if (visiting == child) { if (haveLoops != null) haveLoops.add(visiting); NoSpamLogger.log(logger, NoSpamLogger.Level.ERROR, rootObject.getClass().getName(), 1, TimeUnit.SECONDS, "Strong self-ref loop detected {}", path); } else if (child == null) { returnInProgressVisit(inProgress); inProgress = null; continue; } } catch (IllegalAccessException e) { NoSpamLogger.log(logger, NoSpamLogger.Level.ERROR, 5, TimeUnit.MINUTES, "Could not fully check for self-referential leaks", e); } } } } static final Map<Class<?>, List<Field>> fieldMap = new HashMap<>(); static List<Field> getFields(Class<?> clazz) { if (clazz == null || clazz == PhantomReference.class || clazz == Class.class || java.lang.reflect.Member.class.isAssignableFrom(clazz)) return emptyList(); List<Field> fields = fieldMap.get(clazz); if (fields != null) return fields; fieldMap.put(clazz, fields = new ArrayList<>()); for (Field field : clazz.getDeclaredFields()) { if (field.getType().isPrimitive() || Modifier.isStatic(field.getModifiers())) continue; field.setAccessible(true); fields.add(field); } fields.addAll(getFields(clazz.getSuperclass())); return fields; } public static class IdentityCollection { final Set<Tidy> candidates; public IdentityCollection(Set<Tidy> candidates) { this.candidates = candidates; } public void add(Ref<?> ref) { candidates.remove(ref.state.globalState.tidy); } public void add(SelfRefCounted<?> ref) { add(ref.selfRef()); } public void add(SharedCloseable ref) { if (ref instanceof SharedCloseableImpl) add((SharedCloseableImpl)ref); } public void add(SharedCloseableImpl ref) { add(ref.ref); } public void add(Memory memory) { if (memory instanceof SafeMemory) ((SafeMemory) memory).addTo(this); } } private static class StrongLeakDetector implements Runnable { Set<Tidy> candidates = new HashSet<>(); public void run() { final Set<Tidy> candidates = Collections.newSetFromMap(new IdentityHashMap<>()); for (GlobalState state : globallyExtant) candidates.add(state.tidy); removeExpected(candidates); this.candidates.retainAll(candidates); if (!this.candidates.isEmpty()) { List<String> names = new ArrayList<>(); for (Tidy tidy : this.candidates) names.add(tidy.name()); logger.warn("Strong reference leak candidates detected: {}", names); } this.candidates = candidates; } private void removeExpected(Set<Tidy> candidates) { final Ref.IdentityCollection expected = new Ref.IdentityCollection(candidates); for (Keyspace ks : Keyspace.all()) { for (ColumnFamilyStore cfs : ks.getColumnFamilyStores()) { View view = cfs.getTracker().getView(); for (SSTableReader reader : view.allKnownSSTables()) reader.addTo(expected); } } } } }