/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import java.util.AbstractQueue; import java.util.Collection; import java.util.Iterator; import java.util.NoSuchElementException; import java.lang.ref.WeakReference; // BEGIN android-note // removed link to collections framework docs // END android-note /** * A bounded {@linkplain BlockingQueue blocking queue} backed by an * array. This queue orders elements FIFO (first-in-first-out). The * <em>head</em> of the queue is that element that has been on the * queue the longest time. The <em>tail</em> of the queue is that * element that has been on the queue the shortest time. New elements * are inserted at the tail of the queue, and the queue retrieval * operations obtain elements at the head of the queue. * * <p>This is a classic "bounded buffer", in which a * fixed-sized array holds elements inserted by producers and * extracted by consumers. Once created, the capacity cannot be * changed. Attempts to {@code put} an element into a full queue * will result in the operation blocking; attempts to {@code take} an * element from an empty queue will similarly block. * * <p>This class supports an optional fairness policy for ordering * waiting producer and consumer threads. By default, this ordering * is not guaranteed. However, a queue constructed with fairness set * to {@code true} grants threads access in FIFO order. Fairness * generally decreases throughput but reduces variability and avoids * starvation. * * <p>This class and its iterator implement all of the * <em>optional</em> methods of the {@link Collection} and {@link * Iterator} interfaces. * * @since 1.5 * @author Doug Lea * @param <E> the type of elements held in this collection */ public class ArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, java.io.Serializable { /** * Serialization ID. This class relies on default serialization * even for the items array, which is default-serialized, even if * it is empty. Otherwise it could not be declared final, which is * necessary here. */ private static final long serialVersionUID = -817911632652898426L; /** The queued items */ final Object[] items; /** items index for next take, poll, peek or remove */ int takeIndex; /** items index for next put, offer, or add */ int putIndex; /** Number of elements in the queue */ int count; /* * Concurrency control uses the classic two-condition algorithm * found in any textbook. */ /** Main lock guarding all access */ final ReentrantLock lock; /** Condition for waiting takes */ private final Condition notEmpty; /** Condition for waiting puts */ private final Condition notFull; /** * Shared state for currently active iterators, or null if there * are known not to be any. Allows queue operations to update * iterator state. */ transient Itrs itrs = null; // Internal helper methods /** * Circularly increment i. */ final int inc(int i) { return (++i == items.length) ? 0 : i; } /** * Circularly decrement i. */ final int dec(int i) { return ((i == 0) ? items.length : i) - 1; } /** * Returns item at index i. */ final E itemAt(int i) { @SuppressWarnings("unchecked") E x = (E) items[i]; return x; } /** * Throws NullPointerException if argument is null. * * @param v the element */ private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); } /** * Inserts element at current put position, advances, and signals. * Call only when holding lock. */ private void enqueue(E x) { // assert lock.getHoldCount() == 1; // assert items[putIndex] == null; items[putIndex] = x; putIndex = inc(putIndex); count++; notEmpty.signal(); } /** * Extracts element at current take position, advances, and signals. * Call only when holding lock. */ private E dequeue() { // assert lock.getHoldCount() == 1; // assert items[takeIndex] != null; final Object[] items = this.items; @SuppressWarnings("unchecked") E x = (E) items[takeIndex]; items[takeIndex] = null; takeIndex = inc(takeIndex); count--; if (itrs != null) itrs.elementDequeued(); notFull.signal(); return x; } /** * Deletes item at array index removeIndex. * Utility for remove(Object) and iterator.remove. * Call only when holding lock. */ void removeAt(final int removeIndex) { // assert lock.getHoldCount() == 1; // assert items[removeIndex] != null; // assert removeIndex >= 0 && removeIndex < items.length; final Object[] items = this.items; if (removeIndex == takeIndex) { // removing front item; just advance items[takeIndex] = null; takeIndex = inc(takeIndex); count--; if (itrs != null) itrs.elementDequeued(); } else { // an "interior" remove // slide over all others up through putIndex. final int putIndex = this.putIndex; for (int i = removeIndex;;) { int next = inc(i); if (next != putIndex) { items[i] = items[next]; i = next; } else { items[i] = null; this.putIndex = i; break; } } count--; if (itrs != null) itrs.removedAt(removeIndex); } notFull.signal(); } /** * Creates an {@code ArrayBlockingQueue} with the given (fixed) * capacity and default access policy. * * @param capacity the capacity of this queue * @throws IllegalArgumentException if {@code capacity < 1} */ public ArrayBlockingQueue(int capacity) { this(capacity, false); } /** * Creates an {@code ArrayBlockingQueue} with the given (fixed) * capacity and the specified access policy. * * @param capacity the capacity of this queue * @param fair if {@code true} then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; * if {@code false} the access order is unspecified. * @throws IllegalArgumentException if {@code capacity < 1} */ public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); } /** * Creates an {@code ArrayBlockingQueue} with the given (fixed) * capacity, the specified access policy and initially containing the * elements of the given collection, * added in traversal order of the collection's iterator. * * @param capacity the capacity of this queue * @param fair if {@code true} then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; * if {@code false} the access order is unspecified. * @param c the collection of elements to initially contain * @throws IllegalArgumentException if {@code capacity} is less than * {@code c.size()}, or less than 1. * @throws NullPointerException if the specified collection or any * of its elements are null */ public ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c) { this(capacity, fair); final ReentrantLock lock = this.lock; lock.lock(); // Lock only for visibility, not mutual exclusion try { int i = 0; try { for (E e : c) { checkNotNull(e); items[i++] = e; } } catch (ArrayIndexOutOfBoundsException ex) { throw new IllegalArgumentException(); } count = i; putIndex = (i == capacity) ? 0 : i; } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue if it is * possible to do so immediately without exceeding the queue's capacity, * returning {@code true} upon success and throwing an * {@code IllegalStateException} if this queue is full. * * @param e the element to add * @return {@code true} (as specified by {@link Collection#add}) * @throws IllegalStateException if this queue is full * @throws NullPointerException if the specified element is null */ public boolean add(E e) { return super.add(e); } /** * Inserts the specified element at the tail of this queue if it is * possible to do so immediately without exceeding the queue's capacity, * returning {@code true} upon success and {@code false} if this queue * is full. This method is generally preferable to method {@link #add}, * which can fail to insert an element only by throwing an exception. * * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lock(); try { if (count == items.length) return false; else { enqueue(e); return true; } } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting * for space to become available if the queue is full. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void put(E e) throws InterruptedException { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) notFull.await(); enqueue(e); } finally { lock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting * up to the specified wait time for space to become available if * the queue is full. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { checkNotNull(e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == items.length) { if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } enqueue(e); return true; } finally { lock.unlock(); } } public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { return (count == 0) ? null : dequeue(); } finally { lock.unlock(); } } public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) notEmpty.await(); return dequeue(); } finally { lock.unlock(); } } public E poll(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (count == 0) { if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } return dequeue(); } finally { lock.unlock(); } } public E peek() { final ReentrantLock lock = this.lock; lock.lock(); try { return (count == 0) ? null : itemAt(takeIndex); } finally { lock.unlock(); } } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue */ public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return count; } finally { lock.unlock(); } } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of additional elements that this queue can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current {@code size} of this queue. * * <p>Note that you <em>cannot</em> always tell if an attempt to insert * an element will succeed by inspecting {@code remainingCapacity} * because it may be the case that another thread is about to * insert or remove an element. */ public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return items.length - count; } finally { lock.unlock(); } } /** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element {@code e} such * that {@code o.equals(e)}, if this queue contains one or more such * elements. * Returns {@code true} if this queue contained the specified element * (or equivalently, if this queue changed as a result of the call). * * <p>Removal of interior elements in circular array based queues * is an intrinsically slow and disruptive operation, so should * be undertaken only in exceptional circumstances, ideally * only when the queue is known not to be accessible by other * threads. * * @param o element to be removed from this queue, if present * @return {@code true} if this queue changed as a result of the call */ public boolean remove(Object o) { if (o == null) return false; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { if (count > 0) { final int putIndex = this.putIndex; int i = takeIndex; do { if (o.equals(items[i])) { removeAt(i); return true; } } while ((i = inc(i)) != putIndex); } return false; } finally { lock.unlock(); } } /** * Returns {@code true} if this queue contains the specified element. * More formally, returns {@code true} if and only if this queue contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this queue * @return {@code true} if this queue contains the specified element */ public boolean contains(Object o) { if (o == null) return false; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { if (count > 0) { final int putIndex = this.putIndex; int i = takeIndex; do { if (o.equals(items[i])) return true; } while ((i = inc(i)) != putIndex); } return false; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence. * * <p>The returned array will be "safe" in that no references to it are * maintained by this queue. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this queue */ public Object[] toArray() { final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { final int count = this.count; Object[] a = new Object[count]; for (int i = takeIndex, k = 0; k < count; i = inc(i), k++) a[k] = items[i]; return a; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the queue fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this queue. * * <p>If this queue fits in the specified array with room to spare * (i.e., the array has more elements than this queue), the element in * the array immediately following the end of the queue is set to * {@code null}. * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose {@code x} is a queue known to contain only strings. * The following code can be used to dump the queue into a newly * allocated array of {@code String}: * * <pre> {@code String[] y = x.toArray(new String[0]);}</pre> * * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the queue are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this queue * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { final int count = this.count; final int len = a.length; if (len < count) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), count); for (int i = takeIndex, k = 0; k < count; i = inc(i), k++) a[k] = (T) items[i]; if (len > count) a[count] = null; return a; } finally { lock.unlock(); } } public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { int k = count; if (k == 0) return "[]"; StringBuilder sb = new StringBuilder(); sb.append('['); for (int i = takeIndex; ; i = inc(i)) { Object e = items[i]; sb.append(e == this ? "(this Collection)" : e); if (--k == 0) return sb.append(']').toString(); sb.append(',').append(' '); } } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this queue. * The queue will be empty after this call returns. */ public void clear() { final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int k = count; if (k > 0) { final int putIndex = this.putIndex; int i = takeIndex; do { items[i] = null; } while ((i = inc(i)) != putIndex); takeIndex = putIndex; count = 0; if (itrs != null) itrs.queueIsEmpty(); for (; k > 0 && lock.hasWaiters(notFull); k--) notFull.signal(); } } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c) { return drainTo(c, Integer.MAX_VALUE); } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c, int maxElements) { checkNotNull(c); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; final Object[] items = this.items; final ReentrantLock lock = this.lock; lock.lock(); try { int n = Math.min(maxElements, count); int take = takeIndex; int i = 0; try { while (i < n) { @SuppressWarnings("unchecked") E x = (E) items[take]; c.add(x); items[take] = null; take = inc(take); i++; } return n; } finally { // Restore invariants even if c.add() threw if (i > 0) { count -= i; takeIndex = take; if (itrs != null) { if (count == 0) itrs.queueIsEmpty(); else if (i > take) itrs.takeIndexWrapped(); } for (; i > 0 && lock.hasWaiters(notFull); i--) notFull.signal(); } } } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The elements will be returned in order from first (head) to last (tail). * * <p>The returned iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException * ConcurrentModificationException}, and guarantees to traverse * elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications * subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence */ public Iterator<E> iterator() { return new Itr(); } /** * Shared data between iterators and their queue, allowing queue * modifications to update iterators when elements are removed. * * This adds a lot of complexity for the sake of correctly * handling some uncommon operations, but the combination of * circular-arrays and supporting interior removes (i.e., those * not at head) would cause iterators to sometimes lose their * places and/or (re)report elements they shouldn't. To avoid * this, when a queue has one or more iterators, it keeps iterator * state consistent by: * * (1) keeping track of the number of "cycles", that is, the * number of times takeIndex has wrapped around to 0. * (2) notifying all iterators via the callback removedAt whenever * an interior element is removed (and thus other elements may * be shifted). * * These suffice to eliminate iterator inconsistencies, but * unfortunately add the secondary responsibility of maintaining * the list of iterators. We track all active iterators in a * simple linked list (accessed only when the queue's lock is * held) of weak references to Itr. The list is cleaned up using * 3 different mechanisms: * * (1) Whenever a new iterator is created, do some O(1) checking for * stale list elements. * * (2) Whenever takeIndex wraps around to 0, check for iterators * that have been unused for more than one wrap-around cycle. * * (3) Whenever the queue becomes empty, all iterators are notified * and this entire data structure is discarded. * * So in addition to the removedAt callback that is necessary for * correctness, iterators have the shutdown and takeIndexWrapped * callbacks that help remove stale iterators from the list. * * Whenever a list element is examined, it is expunged if either * the GC has determined that the iterator is discarded, or if the * iterator reports that it is "detached" (does not need any * further state updates). Overhead is maximal when takeIndex * never advances, iterators are discarded before they are * exhausted, and all removals are interior removes, in which case * all stale iterators are discovered by the GC. But even in this * case we don't increase the amortized complexity. * * Care must be taken to keep list sweeping methods from * reentrantly invoking another such method, causing subtle * corruption bugs. */ class Itrs { /** * Node in a linked list of weak iterator references. */ private class Node extends WeakReference<Itr> { Node next; Node(Itr iterator, Node next) { super(iterator); this.next = next; } } /** Incremented whenever takeIndex wraps around to 0 */ int cycles = 0; /** Linked list of weak iterator references */ private Node head; /** Used to expunge stale iterators */ private Node sweeper = null; private static final int SHORT_SWEEP_PROBES = 4; private static final int LONG_SWEEP_PROBES = 16; Itrs(Itr initial) { register(initial); } /** * Sweeps itrs, looking for and expunging stale iterators. * If at least one was found, tries harder to find more. * Called only from iterating thread. * * @param tryHarder whether to start in try-harder mode, because * there is known to be at least one iterator to collect */ void doSomeSweeping(boolean tryHarder) { // assert lock.getHoldCount() == 1; // assert head != null; int probes = tryHarder ? LONG_SWEEP_PROBES : SHORT_SWEEP_PROBES; Node o, p; final Node sweeper = this.sweeper; boolean passedGo; // to limit search to one full sweep if (sweeper == null) { o = null; p = head; passedGo = true; } else { o = sweeper; p = o.next; passedGo = false; } for (; probes > 0; probes--) { if (p == null) { if (passedGo) break; o = null; p = head; passedGo = true; } final Itr it = p.get(); final Node next = p.next; if (it == null || it.isDetached()) { // found a discarded/exhausted iterator probes = LONG_SWEEP_PROBES; // "try harder" // unlink p p.clear(); p.next = null; if (o == null) { head = next; if (next == null) { // We've run out of iterators to track; retire itrs = null; return; } } else o.next = next; } else { o = p; } p = next; } this.sweeper = (p == null) ? null : o; } /** * Adds a new iterator to the linked list of tracked iterators. */ void register(Itr itr) { // assert lock.getHoldCount() == 1; head = new Node(itr, head); } /** * Called whenever takeIndex wraps around to 0. * * Notifies all iterators, and expunges any that are now stale. */ void takeIndexWrapped() { // assert lock.getHoldCount() == 1; cycles++; for (Node o = null, p = head; p != null;) { final Itr it = p.get(); final Node next = p.next; if (it == null || it.takeIndexWrapped()) { // unlink p // assert it == null || it.isDetached(); p.clear(); p.next = null; if (o == null) head = next; else o.next = next; } else { o = p; } p = next; } if (head == null) // no more iterators to track itrs = null; } /** * Called whenever an interior remove (not at takeIndex) occured. * * Notifies all iterators, and expunges any that are now stale. */ void removedAt(int removedIndex) { for (Node o = null, p = head; p != null;) { final Itr it = p.get(); final Node next = p.next; if (it == null || it.removedAt(removedIndex)) { // unlink p // assert it == null || it.isDetached(); p.clear(); p.next = null; if (o == null) head = next; else o.next = next; } else { o = p; } p = next; } if (head == null) // no more iterators to track itrs = null; } /** * Called whenever the queue becomes empty. * * Notifies all active iterators that the queue is empty, * clears all weak refs, and unlinks the itrs datastructure. */ void queueIsEmpty() { // assert lock.getHoldCount() == 1; for (Node p = head; p != null; p = p.next) { Itr it = p.get(); if (it != null) { p.clear(); it.shutdown(); } } head = null; itrs = null; } /** * Called whenever an element has been dequeued (at takeIndex). */ void elementDequeued() { // assert lock.getHoldCount() == 1; if (count == 0) queueIsEmpty(); else if (takeIndex == 0) takeIndexWrapped(); } } /** * Iterator for ArrayBlockingQueue. * * To maintain weak consistency with respect to puts and takes, we * read ahead one slot, so as to not report hasNext true but then * not have an element to return. * * We switch into "detached" mode (allowing prompt unlinking from * itrs without help from the GC) when all indices are negative, or * when hasNext returns false for the first time. This allows the * iterator to track concurrent updates completely accurately, * except for the corner case of the user calling Iterator.remove() * after hasNext() returned false. Even in this case, we ensure * that we don't remove the wrong element by keeping track of the * expected element to remove, in lastItem. Yes, we may fail to * remove lastItem from the queue if it moved due to an interleaved * interior remove while in detached mode. */ private class Itr implements Iterator<E> { /** Index to look for new nextItem; NONE at end */ private int cursor; /** Element to be returned by next call to next(); null if none */ private E nextItem; /** Index of nextItem; NONE if none, REMOVED if removed elsewhere */ private int nextIndex; /** Last element returned; null if none or not detached. */ private E lastItem; /** Index of lastItem, NONE if none, REMOVED if removed elsewhere */ private int lastRet; /** Previous value of takeIndex, or DETACHED when detached */ private int prevTakeIndex; /** Previous value of iters.cycles */ private int prevCycles; /** Special index value indicating "not available" or "undefined" */ private static final int NONE = -1; /** * Special index value indicating "removed elsewhere", that is, * removed by some operation other than a call to this.remove(). */ private static final int REMOVED = -2; /** Special value for prevTakeIndex indicating "detached mode" */ private static final int DETACHED = -3; Itr() { // assert lock.getHoldCount() == 0; lastRet = NONE; final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { if (count == 0) { // assert itrs == null; cursor = NONE; nextIndex = NONE; prevTakeIndex = DETACHED; } else { final int takeIndex = ArrayBlockingQueue.this.takeIndex; prevTakeIndex = takeIndex; nextItem = itemAt(nextIndex = takeIndex); cursor = incCursor(takeIndex); if (itrs == null) { itrs = new Itrs(this); } else { itrs.register(this); // in this order itrs.doSomeSweeping(false); } prevCycles = itrs.cycles; // assert takeIndex >= 0; // assert prevTakeIndex == takeIndex; // assert nextIndex >= 0; // assert nextItem != null; } } finally { lock.unlock(); } } boolean isDetached() { // assert lock.getHoldCount() == 1; return prevTakeIndex < 0; } private int incCursor(int index) { // assert lock.getHoldCount() == 1; index = inc(index); if (index == putIndex) index = NONE; return index; } /** * Returns true if index is invalidated by the given number of * dequeues, starting from prevTakeIndex. */ private boolean invalidated(int index, int prevTakeIndex, long dequeues, int length) { if (index < 0) return false; int distance = index - prevTakeIndex; if (distance < 0) distance += length; return dequeues > distance; } /** * Adjusts indices to incorporate all dequeues since the last * operation on this iterator. Call only from iterating thread. */ private void incorporateDequeues() { // assert lock.getHoldCount() == 1; // assert itrs != null; // assert !isDetached(); // assert count > 0; final int cycles = itrs.cycles; final int takeIndex = ArrayBlockingQueue.this.takeIndex; final int prevCycles = this.prevCycles; final int prevTakeIndex = this.prevTakeIndex; if (cycles != prevCycles || takeIndex != prevTakeIndex) { final int len = items.length; // how far takeIndex has advanced since the previous // operation of this iterator long dequeues = (cycles - prevCycles) * len + (takeIndex - prevTakeIndex); // Check indices for invalidation if (invalidated(lastRet, prevTakeIndex, dequeues, len)) lastRet = REMOVED; if (invalidated(nextIndex, prevTakeIndex, dequeues, len)) nextIndex = REMOVED; if (invalidated(cursor, prevTakeIndex, dequeues, len)) cursor = takeIndex; if (cursor < 0 && nextIndex < 0 && lastRet < 0) detach(); else { this.prevCycles = cycles; this.prevTakeIndex = takeIndex; } } } /** * Called when itrs should stop tracking this iterator, either * because there are no more indices to update (cursor < 0 && * nextIndex < 0 && lastRet < 0) or as a special exception, when * lastRet >= 0, because hasNext() is about to return false for the * first time. Call only from iterating thread. */ private void detach() { // Switch to detached mode // assert lock.getHoldCount() == 1; // assert cursor == NONE; // assert nextIndex < 0; // assert lastRet < 0 || nextItem == null; // assert lastRet < 0 ^ lastItem != null; if (prevTakeIndex >= 0) { // assert itrs != null; prevTakeIndex = DETACHED; // try to unlink from itrs (but not too hard) itrs.doSomeSweeping(true); } } /** * For performance reasons, we would like not to acquire a lock in * hasNext in the common case. To allow for this, we only access * fields (i.e. nextItem) that are not modified by update operations * triggered by queue modifications. */ public boolean hasNext() { // assert lock.getHoldCount() == 0; if (nextItem != null) return true; noNext(); return false; } private void noNext() { final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { // assert cursor == NONE; // assert nextIndex == NONE; if (!isDetached()) { // assert lastRet >= 0; incorporateDequeues(); // might update lastRet if (lastRet >= 0) { lastItem = itemAt(lastRet); // assert lastItem != null; detach(); } } // assert isDetached(); // assert lastRet < 0 ^ lastItem != null; } finally { lock.unlock(); } } public E next() { // assert lock.getHoldCount() == 0; final E x = nextItem; if (x == null) throw new NoSuchElementException(); final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { if (!isDetached()) incorporateDequeues(); // assert nextIndex != NONE; // assert lastItem == null; lastRet = nextIndex; final int cursor = this.cursor; if (cursor >= 0) { nextItem = itemAt(nextIndex = cursor); // assert nextItem != null; this.cursor = incCursor(cursor); } else { nextIndex = NONE; nextItem = null; } } finally { lock.unlock(); } return x; } public void remove() { // assert lock.getHoldCount() == 0; final ReentrantLock lock = ArrayBlockingQueue.this.lock; lock.lock(); try { if (!isDetached()) incorporateDequeues(); // might update lastRet or detach final int lastRet = this.lastRet; this.lastRet = NONE; if (lastRet >= 0) { if (!isDetached()) removeAt(lastRet); else { final E lastItem = this.lastItem; // assert lastItem != null; this.lastItem = null; if (itemAt(lastRet) == lastItem) removeAt(lastRet); } } else if (lastRet == NONE) throw new IllegalStateException(); // else lastRet == REMOVED and the last returned element was // previously asynchronously removed via an operation other // than this.remove(), so nothing to do. if (cursor < 0 && nextIndex < 0) detach(); } finally { lock.unlock(); // assert lastRet == NONE; // assert lastItem == null; } } /** * Called to notify the iterator that the queue is empty, or that it * has fallen hopelessly behind, so that it should abandon any * further iteration, except possibly to return one more element * from next(), as promised by returning true from hasNext(). */ void shutdown() { // assert lock.getHoldCount() == 1; cursor = NONE; if (nextIndex >= 0) nextIndex = REMOVED; if (lastRet >= 0) { lastRet = REMOVED; lastItem = null; } prevTakeIndex = DETACHED; // Don't set nextItem to null because we must continue to be // able to return it on next(). // // Caller will unlink from itrs when convenient. } private int distance(int index, int prevTakeIndex, int length) { int distance = index - prevTakeIndex; if (distance < 0) distance += length; return distance; } /** * Called whenever an interior remove (not at takeIndex) occured. * * @return true if this iterator should be unlinked from itrs */ boolean removedAt(int removedIndex) { // assert lock.getHoldCount() == 1; if (isDetached()) return true; final int cycles = itrs.cycles; final int takeIndex = ArrayBlockingQueue.this.takeIndex; final int prevCycles = this.prevCycles; final int prevTakeIndex = this.prevTakeIndex; final int len = items.length; int cycleDiff = cycles - prevCycles; if (removedIndex < takeIndex) cycleDiff++; final int removedDistance = (cycleDiff * len) + (removedIndex - prevTakeIndex); // assert removedDistance >= 0; int cursor = this.cursor; if (cursor >= 0) { int x = distance(cursor, prevTakeIndex, len); if (x == removedDistance) { if (cursor == putIndex) this.cursor = cursor = NONE; } else if (x > removedDistance) { // assert cursor != prevTakeIndex; this.cursor = cursor = dec(cursor); } } int lastRet = this.lastRet; if (lastRet >= 0) { int x = distance(lastRet, prevTakeIndex, len); if (x == removedDistance) this.lastRet = lastRet = REMOVED; else if (x > removedDistance) this.lastRet = lastRet = dec(lastRet); } int nextIndex = this.nextIndex; if (nextIndex >= 0) { int x = distance(nextIndex, prevTakeIndex, len); if (x == removedDistance) this.nextIndex = nextIndex = REMOVED; else if (x > removedDistance) this.nextIndex = nextIndex = dec(nextIndex); } else if (cursor < 0 && nextIndex < 0 && lastRet < 0) { this.prevTakeIndex = DETACHED; return true; } return false; } /** * Called whenever takeIndex wraps around to zero. * * @return true if this iterator should be unlinked from itrs */ boolean takeIndexWrapped() { // assert lock.getHoldCount() == 1; if (isDetached()) return true; if (itrs.cycles - prevCycles > 1) { // All the elements that existed at the time of the last // operation are gone, so abandon further iteration. shutdown(); return true; } return false; } // /** Uncomment for debugging. */ // public String toString() { // return ("cursor=" + cursor + " " + // "nextIndex=" + nextIndex + " " + // "lastRet=" + lastRet + " " + // "nextItem=" + nextItem + " " + // "lastItem=" + lastItem + " " + // "prevCycles=" + prevCycles + " " + // "prevTakeIndex=" + prevTakeIndex + " " + // "size()=" + size() + " " + // "remainingCapacity()=" + remainingCapacity()); // } } }