/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package java.util; import java.io.Serializable; /** * This class provides methods that return pseudo-random values. * * <p>It is dangerous to seed {@code Random} with the current time because * that value is more predictable to an attacker than the default seed. * * <p>This class is thread-safe. * * @see java.security.SecureRandom */ public class Random implements Serializable { private static final long serialVersionUID = 3905348978240129619L; private static final long multiplier = 0x5deece66dL; /** * The boolean value indicating if the second Gaussian number is available. * * @serial */ private boolean haveNextNextGaussian; /** * @serial It is associated with the internal state of this generator. */ private long seed; /** * The second Gaussian generated number. * * @serial */ private double nextNextGaussian; /** * Constructs a random generator with an initial state that is * unlikely to be duplicated by a subsequent instantiation. * * <p>The initial state (that is, the seed) is <i>partially</i> based * on the current time of day in milliseconds. */ public Random() { // Note: Using identityHashCode() to be hermetic wrt subclasses. setSeed(System.currentTimeMillis() + System.identityHashCode(this)); } /** * Construct a random generator with the given {@code seed} as the * initial state. Equivalent to {@code Random r = new Random(); r.setSeed(seed);}. * * <p>This constructor is mainly useful for <i>predictability</i> in tests. * The default constructor is likely to provide better randomness. */ public Random(long seed) { setSeed(seed); } /** * Returns a pseudo-random uniformly distributed {@code int} value of * the number of bits specified by the argument {@code bits} as * described by Donald E. Knuth in <i>The Art of Computer Programming, * Volume 2: Seminumerical Algorithms</i>, section 3.2.1. * * <p>Most applications will want to use one of this class' convenience methods instead. */ protected synchronized int next(int bits) { seed = (seed * multiplier + 0xbL) & ((1L << 48) - 1); return (int) (seed >>> (48 - bits)); } /** * Returns a pseudo-random uniformly distributed {@code boolean}. */ public boolean nextBoolean() { return next(1) != 0; } /** * Fills {@code buf} with random bytes. */ public void nextBytes(byte[] buf) { int rand = 0, count = 0, loop = 0; while (count < buf.length) { if (loop == 0) { rand = nextInt(); loop = 3; } else { loop--; } buf[count++] = (byte) rand; rand >>= 8; } } /** * Returns a pseudo-random uniformly distributed {@code double} * in the half-open range [0.0, 1.0). */ public double nextDouble() { return ((((long) next(26) << 27) + next(27)) / (double) (1L << 53)); } /** * Returns a pseudo-random uniformly distributed {@code float} * in the half-open range [0.0, 1.0). */ public float nextFloat() { return (next(24) / 16777216f); } /** * Returns a pseudo-random (approximately) normally distributed * {@code double} with mean 0.0 and standard deviation 1.0. * This method uses the <i>polar method</i> of G. E. P. Box, M. * E. Muller, and G. Marsaglia, as described by Donald E. Knuth in <i>The * Art of Computer Programming, Volume 2: Seminumerical Algorithms</i>, * section 3.4.1, subsection C, algorithm P. */ public synchronized double nextGaussian() { if (haveNextNextGaussian) { haveNextNextGaussian = false; return nextNextGaussian; } double v1, v2, s; do { v1 = 2 * nextDouble() - 1; v2 = 2 * nextDouble() - 1; s = v1 * v1 + v2 * v2; } while (s >= 1 || s == 0); // The specification says this uses StrictMath. double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s) / s); nextNextGaussian = v2 * multiplier; haveNextNextGaussian = true; return v1 * multiplier; } /** * Returns a pseudo-random uniformly distributed {@code int}. */ public int nextInt() { return next(32); } /** * Returns a pseudo-random uniformly distributed {@code int} * in the half-open range [0, n). */ public int nextInt(int n) { if (n > 0) { if ((n & -n) == n) { return (int) ((n * (long) next(31)) >> 31); } int bits, val; do { bits = next(31); val = bits % n; } while (bits - val + (n - 1) < 0); return val; } throw new IllegalArgumentException(); } /** * Returns a pseudo-random uniformly distributed {@code long}. */ public long nextLong() { return ((long) next(32) << 32) + next(32); } /** * Modifies the seed using a linear congruential formula presented in <i>The * Art of Computer Programming, Volume 2</i>, Section 3.2.1. */ public synchronized void setSeed(long seed) { this.seed = (seed ^ multiplier) & ((1L << 48) - 1); haveNextNextGaussian = false; } }