/* * Copyright (C) 2007 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.collect; import com.google.common.annotations.GwtCompatible; import com.google.common.annotations.VisibleForTesting; import com.google.common.base.Function; import java.io.Serializable; import java.util.AbstractList; import java.util.AbstractSequentialList; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.ListIterator; import java.util.RandomAccess; import javax.annotation.Nullable; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkElementIndex; import static com.google.common.base.Preconditions.checkNotNull; /** * Static utility methods pertaining to {@link List} instances. Also see this * class's counterparts {@link Sets} and {@link Maps}. * * @author Kevin Bourrillion * @author Mike Bostock * @since 2010.01.04 <b>stable</b> (imported from Google Collections Library) */ @GwtCompatible public final class Lists { private Lists() {} // ArrayList /** * Creates a <i>mutable</i>, empty {@code ArrayList} instance. * * <p><b>Note:</b> if mutability is not required, use {@link * ImmutableList#of()} instead. * * @return a new, empty {@code ArrayList} */ @GwtCompatible(serializable = true) public static <E> ArrayList<E> newArrayList() { return new ArrayList<E>(); } /** * Creates a <i>mutable</i> {@code ArrayList} instance containing the given * elements. * * <p><b>Note:</b> if mutability is not required and the elements are * non-null, use {@link ImmutableList#of(Object[])} instead. * * @param elements the elements that the list should contain, in order * @return a new {@code ArrayList} containing those elements */ @GwtCompatible(serializable = true) public static <E> ArrayList<E> newArrayList(E... elements) { checkNotNull(elements); // for GWT // Avoid integer overflow when a large array is passed in int capacity = computeArrayListCapacity(elements.length); ArrayList<E> list = new ArrayList<E>(capacity); Collections.addAll(list, elements); return list; } @VisibleForTesting static int computeArrayListCapacity(int arraySize) { checkArgument(arraySize >= 0); // TODO: Figure out the right behavior, and document it return (int) Math.min(5L + arraySize + (arraySize / 10), Integer.MAX_VALUE); } /** * Creates a <i>mutable</i> {@code ArrayList} instance containing the given * elements. * * <p><b>Note:</b> if mutability is not required and the elements are * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. * * @param elements the elements that the list should contain, in order * @return a new {@code ArrayList} containing those elements */ @GwtCompatible(serializable = true) public static <E> ArrayList<E> newArrayList(Iterable<? extends E> elements) { checkNotNull(elements); // for GWT // Let ArrayList's sizing logic work, if possible if (elements instanceof Collection) { @SuppressWarnings("unchecked") Collection<? extends E> collection = (Collection<? extends E>) elements; return new ArrayList<E>(collection); } else { return newArrayList(elements.iterator()); } } /** * Creates a <i>mutable</i> {@code ArrayList} instance containing the given * elements. * * <p><b>Note:</b> if mutability is not required and the elements are * non-null, use {@link ImmutableList#copyOf(Iterator)} instead. * * @param elements the elements that the list should contain, in order * @return a new {@code ArrayList} containing those elements */ @GwtCompatible(serializable = true) public static <E> ArrayList<E> newArrayList(Iterator<? extends E> elements) { checkNotNull(elements); // for GWT ArrayList<E> list = newArrayList(); while (elements.hasNext()) { list.add(elements.next()); } return list; } /** * Creates an {@code ArrayList} instance backed by an array of the * <i>exact</i> size specified; equivalent to * {@link ArrayList#ArrayList(int)}. * * <p><b>Note:</b> if you know the exact size your list will be, consider * using a fixed-size list ({@link Arrays#asList(Object[])}) or an {@link * ImmutableList} instead of a growable {@link ArrayList}. * * <p><b>Note:</b> If you have only an <i>estimate</i> of the eventual size of * the list, consider padding this estimate by a suitable amount, or simply * use {@link #newArrayListWithExpectedSize(int)} instead. * * @param initialArraySize the exact size of the initial backing array for * the returned array list ({@code ArrayList} documentation calls this * value the "capacity") * @return a new, empty {@code ArrayList} which is guaranteed not to resize * itself unless its size reaches {@code initialArraySize + 1} * @throws IllegalArgumentException if {@code initialArraySize} is negative */ @GwtCompatible(serializable = true) public static <E> ArrayList<E> newArrayListWithCapacity( int initialArraySize) { return new ArrayList<E>(initialArraySize); } /** * Creates an {@code ArrayList} instance sized appropriately to hold an * <i>estimated</i> number of elements without resizing. A small amount of * padding is added in case the estimate is low. * * <p><b>Note:</b> If you know the <i>exact</i> number of elements the list * will hold, or prefer to calculate your own amount of padding, refer to * {@link #newArrayListWithCapacity(int)}. * * @param estimatedSize an estimate of the eventual {@link List#size()} of * the new list * @return a new, empty {@code ArrayList}, sized appropriately to hold the * estimated number of elements * @throws IllegalArgumentException if {@code estimatedSize} is negative */ @GwtCompatible(serializable = true) public static <E> ArrayList<E> newArrayListWithExpectedSize( int estimatedSize) { return new ArrayList<E>(computeArrayListCapacity(estimatedSize)); } // LinkedList /** * Creates an empty {@code LinkedList} instance. * * <p><b>Note:</b> if you need an immutable empty {@link List}, use * {@link Collections#emptyList} instead. * * @return a new, empty {@code LinkedList} */ @GwtCompatible(serializable = true) public static <E> LinkedList<E> newLinkedList() { return new LinkedList<E>(); } /** * Creates a {@code LinkedList} instance containing the given elements. * * @param elements the elements that the list should contain, in order * @return a new {@code LinkedList} containing those elements */ @GwtCompatible(serializable = true) public static <E> LinkedList<E> newLinkedList( Iterable<? extends E> elements) { LinkedList<E> list = newLinkedList(); for (E element : elements) { list.add(element); } return list; } /** * Returns an unmodifiable list containing the specified first element and * backed by the specified array of additional elements. Changes to the {@code * rest} array will be reflected in the returned list. Unlike {@link * Arrays#asList}, the returned list is unmodifiable. * * <p>This is useful when a varargs method needs to use a signature such as * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload * ambiguity or to enforce a minimum argument count. * * <p>The returned list is serializable and implements {@link RandomAccess}. * * @param first the first element * @param rest an array of additional elements, possibly empty * @return an unmodifiable list containing the specified elements */ public static <E> List<E> asList(@Nullable E first, E[] rest) { return new OnePlusArrayList<E>(first, rest); } /** @see Lists#asList(Object, Object[]) */ private static class OnePlusArrayList<E> extends AbstractList<E> implements Serializable, RandomAccess { final E first; final E[] rest; OnePlusArrayList(@Nullable E first, E[] rest) { this.first = first; this.rest = checkNotNull(rest); } @Override public int size() { return rest.length + 1; } @Override public E get(int index) { // check explicitly so the IOOBE will have the right message checkElementIndex(index, size()); return (index == 0) ? first : rest[index - 1]; } private static final long serialVersionUID = 0; } /** * Returns an unmodifiable list containing the specified first and second * element, and backed by the specified array of additional elements. Changes * to the {@code rest} array will be reflected in the returned list. Unlike * {@link Arrays#asList}, the returned list is unmodifiable. * * <p>This is useful when a varargs method needs to use a signature such as * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid * overload ambiguity or to enforce a minimum argument count. * * <p>The returned list is serializable and implements {@link RandomAccess}. * * @param first the first element * @param second the second element * @param rest an array of additional elements, possibly empty * @return an unmodifiable list containing the specified elements */ public static <E> List<E> asList( @Nullable E first, @Nullable E second, E[] rest) { return new TwoPlusArrayList<E>(first, second, rest); } /** @see Lists#asList(Object, Object, Object[]) */ private static class TwoPlusArrayList<E> extends AbstractList<E> implements Serializable, RandomAccess { final E first; final E second; final E[] rest; TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) { this.first = first; this.second = second; this.rest = checkNotNull(rest); } @Override public int size() { return rest.length + 2; } @Override public E get(int index) { switch (index) { case 0: return first; case 1: return second; default: // check explicitly so the IOOBE will have the right message checkElementIndex(index, size()); return rest[index - 2]; } } private static final long serialVersionUID = 0; } /** * Returns a list that applies {@code function} to each element of {@code * fromList}. The returned list is a transformed view of {@code fromList}; * changes to {@code fromList} will be reflected in the returned list and vice * versa. * * <p>Since functions are not reversible, the transform is one-way and new * items cannot be stored in the returned list. The {@code add}, * {@code addAll} and {@code set} methods are unsupported in the returned * list. * * <p>The function is applied lazily, invoked when needed. This is necessary * for the returned list to be a view, but it means that the function will be * applied many times for bulk operations like {@link List#contains} and * {@link List#hashCode}. For this to perform well, {@code function} should be * fast. To avoid lazy evaluation when the returned list doesn't need to be a * view, copy the returned list into a new list of your choosing. * * <p>If {@code fromList} implements {@link RandomAccess}, so will the * returned list. The returned list always implements {@link Serializable}, * but serialization will succeed only when {@code fromList} and * {@code function} are serializable. The returned list is threadsafe if the * supplied list and function are. */ public static <F, T> List<T> transform( List<F> fromList, Function<? super F, ? extends T> function) { return (fromList instanceof RandomAccess) ? new TransformingRandomAccessList<F, T>(fromList, function) : new TransformingSequentialList<F, T>(fromList, function); } /** * Implementation of a sequential transforming list. * * @see Lists#transform */ private static class TransformingSequentialList<F, T> extends AbstractSequentialList<T> implements Serializable { final List<F> fromList; final Function<? super F, ? extends T> function; TransformingSequentialList( List<F> fromList, Function<? super F, ? extends T> function) { this.fromList = checkNotNull(fromList); this.function = checkNotNull(function); } /** * The default implementation inherited is based on iteration and removal of * each element which can be overkill. That's why we forward this call * directly to the backing list. */ @Override public void clear() { fromList.clear(); } @Override public int size() { return fromList.size(); } @Override public ListIterator<T> listIterator(final int index) { final ListIterator<F> delegate = fromList.listIterator(index); return new ListIterator<T>() { public void add(T e) { throw new UnsupportedOperationException(); } public boolean hasNext() { return delegate.hasNext(); } public boolean hasPrevious() { return delegate.hasPrevious(); } public T next() { return function.apply(delegate.next()); } public int nextIndex() { return delegate.nextIndex(); } public T previous() { return function.apply(delegate.previous()); } public int previousIndex() { return delegate.previousIndex(); } public void remove() { delegate.remove(); } public void set(T e) { throw new UnsupportedOperationException("not supported"); } }; } private static final long serialVersionUID = 0; } /** * Implementation of a transforming random access list. We try to make as many * of these methods pass-through to the source list as possible so that the * performance characteristics of the source list and transformed list are * similar. * * @see Lists#transform */ private static class TransformingRandomAccessList<F, T> extends AbstractList<T> implements RandomAccess, Serializable { final List<F> fromList; final Function<? super F, ? extends T> function; TransformingRandomAccessList( List<F> fromList, Function<? super F, ? extends T> function) { this.fromList = checkNotNull(fromList); this.function = checkNotNull(function); } @Override public void clear() { fromList.clear(); } @Override public T get(int index) { return function.apply(fromList.get(index)); } @Override public boolean isEmpty() { return fromList.isEmpty(); } @Override public T remove(int index) { return function.apply(fromList.remove(index)); } @Override public int size() { return fromList.size(); } private static final long serialVersionUID = 0; } /** * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, * each of the same size (the final list may be smaller). For example, * partitioning a list containing {@code [a, b, c, d, e]} with a partition * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing * two inner lists of three and two elements, all in the original order. * * <p>The outer list is unmodifiable, but reflects the latest state of the * source list. The inner lists are sublist views of the original list, * produced on demand using {@link List#subList(int, int)}, and are subject * to all the usual caveats about modification as explained in that API. * * @param list the list to return consecutive sublists of * @param size the desired size of each sublist (the last may be * smaller) * @return a list of consecutive sublists * @throws IllegalArgumentException if {@code partitionSize} is nonpositive */ public static <T> List<List<T>> partition(List<T> list, int size) { checkNotNull(list); checkArgument(size > 0); return (list instanceof RandomAccess) ? new RandomAccessPartition<T>(list, size) : new Partition<T>(list, size); } private static class Partition<T> extends AbstractList<List<T>> { final List<T> list; final int size; Partition(List<T> list, int size) { this.list = list; this.size = size; } @Override public List<T> get(int index) { int listSize = size(); checkElementIndex(index, listSize); int start = index * size; int end = Math.min(start + size, list.size()); return Platform.subList(list, start, end); } @Override public int size() { return (list.size() + size - 1) / size; } @Override public boolean isEmpty() { return list.isEmpty(); } } private static class RandomAccessPartition<T> extends Partition<T> implements RandomAccess { RandomAccessPartition(List<T> list, int size) { super(list, size); } } }