/*- * #%L * Fiji distribution of ImageJ for the life sciences. * %% * Copyright (C) 2007 - 2017 Fiji developers. * %% * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program. If not, see * <http://www.gnu.org/licenses/gpl-2.0.html>. * #L% */ package spim.vecmath; /* * Copyright 1996-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ /** * A single precision floating point 3 by 3 matrix. Primarily to support 3D * rotations. * */ public class Matrix3f implements java.io.Serializable, Cloneable { // Compatible with 1.1 static final long serialVersionUID = 329697160112089834L; /** * The first matrix element in the first row. */ public float m00; /** * The second matrix element in the first row. */ public float m01; /** * The third matrix element in the first row. */ public float m02; /** * The first matrix element in the second row. */ public float m10; /** * The second matrix element in the second row. */ public float m11; /** * The third matrix element in the second row. */ public float m12; /** * The first matrix element in the third row. */ public float m20; /** * The second matrix element in the third row. */ public float m21; /** * The third matrix element in the third row. */ public float m22; /* * double[] tmp = new double[9]; // scratch matrix double[] tmp_rot = new * double[9]; // scratch matrix double[] tmp_scale = new double[3]; // * scratch matrix */ private static final double EPS = 1.0E-8; /** * Constructs and initializes a Matrix3f from the specified nine values. * * @param m00 * the [0][0] element * @param m01 * the [0][1] element * @param m02 * the [0][2] element * @param m10 * the [1][0] element * @param m11 * the [1][1] element * @param m12 * the [1][2] element * @param m20 * the [2][0] element * @param m21 * the [2][1] element * @param m22 * the [2][2] element */ public Matrix3f( float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22 ) { this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m20 = m20; this.m21 = m21; this.m22 = m22; } /** * Constructs and initializes a Matrix3f from the specified nine-element * array. this.m00 =v[0], this.m01=v[1], etc. * * @param v * the array of length 9 containing in order */ public Matrix3f( float[] v ) { this.m00 = v[ 0 ]; this.m01 = v[ 1 ]; this.m02 = v[ 2 ]; this.m10 = v[ 3 ]; this.m11 = v[ 4 ]; this.m12 = v[ 5 ]; this.m20 = v[ 6 ]; this.m21 = v[ 7 ]; this.m22 = v[ 8 ]; } /** * Constructs a new matrix with the same values as the Matrix3d parameter. * * @param m1 * the source matrix */ public Matrix3f( Matrix3d m1 ) { this.m00 = (float) m1.m00; this.m01 = (float) m1.m01; this.m02 = (float) m1.m02; this.m10 = (float) m1.m10; this.m11 = (float) m1.m11; this.m12 = (float) m1.m12; this.m20 = (float) m1.m20; this.m21 = (float) m1.m21; this.m22 = (float) m1.m22; } /** * Constructs a new matrix with the same values as the Matrix3f parameter. * * @param m1 * the source matrix */ public Matrix3f( Matrix3f m1 ) { this.m00 = m1.m00; this.m01 = m1.m01; this.m02 = m1.m02; this.m10 = m1.m10; this.m11 = m1.m11; this.m12 = m1.m12; this.m20 = m1.m20; this.m21 = m1.m21; this.m22 = m1.m22; } /** * Constructs and initializes a Matrix3f to all zeros. */ public Matrix3f() { this.m00 = (float) 0.0; this.m01 = (float) 0.0; this.m02 = (float) 0.0; this.m10 = (float) 0.0; this.m11 = (float) 0.0; this.m12 = (float) 0.0; this.m20 = (float) 0.0; this.m21 = (float) 0.0; this.m22 = (float) 0.0; } /** * Returns a string that contains the values of this Matrix3f. * * @return the String representation */ @Override public String toString() { return this.m00 + ", " + this.m01 + ", " + this.m02 + "\n" + this.m10 + ", " + this.m11 + ", " + this.m12 + "\n" + this.m20 + ", " + this.m21 + ", " + this.m22 + "\n"; } /** * Sets this Matrix3f to identity. */ public final void setIdentity() { this.m00 = (float) 1.0; this.m01 = (float) 0.0; this.m02 = (float) 0.0; this.m10 = (float) 0.0; this.m11 = (float) 1.0; this.m12 = (float) 0.0; this.m20 = (float) 0.0; this.m21 = (float) 0.0; this.m22 = (float) 1.0; } /** * Sets the scale component of the current matrix by factoring out the * current scale (by doing an SVD) and multiplying by the new scale. * * @param scale * the new scale amount */ public final void setScale( float scale ) { double[] tmp_rot = new double[ 9 ]; // scratch matrix double[] tmp_scale = new double[ 3 ]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); this.m00 = (float) ( tmp_rot[ 0 ] * scale ); this.m01 = (float) ( tmp_rot[ 1 ] * scale ); this.m02 = (float) ( tmp_rot[ 2 ] * scale ); this.m10 = (float) ( tmp_rot[ 3 ] * scale ); this.m11 = (float) ( tmp_rot[ 4 ] * scale ); this.m12 = (float) ( tmp_rot[ 5 ] * scale ); this.m20 = (float) ( tmp_rot[ 6 ] * scale ); this.m21 = (float) ( tmp_rot[ 7 ] * scale ); this.m22 = (float) ( tmp_rot[ 8 ] * scale ); } /** * Sets the specified element of this matrix3f to the value provided. * * @param row * the row number to be modified (zero indexed) * @param column * the column number to be modified (zero indexed) * @param value * the new value */ public final void setElement( int row, int column, float value ) { switch ( row ) { case 0: switch ( column ) { case 0: this.m00 = value; break; case 1: this.m01 = value; break; case 2: this.m02 = value; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f0" ) ); } break; case 1: switch ( column ) { case 0: this.m10 = value; break; case 1: this.m11 = value; break; case 2: this.m12 = value; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f0" ) ); } break; case 2: switch ( column ) { case 0: this.m20 = value; break; case 1: this.m21 = value; break; case 2: this.m22 = value; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f0" ) ); } break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f0" ) ); } } /** * Copies the matrix values in the specified row into the vector parameter. * * @param row * the matrix row * @param v * the vector into which the matrix row values will be copied */ public final void getRow( int row, Vector3f v ) { if ( row == 0 ) { v.x = m00; v.y = m01; v.z = m02; } else if ( row == 1 ) { v.x = m10; v.y = m11; v.z = m12; } else if ( row == 2 ) { v.x = m20; v.y = m21; v.z = m22; } else { throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f1" ) ); } } /** * Copies the matrix values in the specified row into the array parameter. * * @param row * the matrix row * @param v * the array into which the matrix row values will be copied */ public final void getRow( int row, float v[] ) { if ( row == 0 ) { v[ 0 ] = m00; v[ 1 ] = m01; v[ 2 ] = m02; } else if ( row == 1 ) { v[ 0 ] = m10; v[ 1 ] = m11; v[ 2 ] = m12; } else if ( row == 2 ) { v[ 0 ] = m20; v[ 1 ] = m21; v[ 2 ] = m22; } else { throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f1" ) ); } } /** * Copies the matrix values in the specified column into the vector * parameter. * * @param column * the matrix column * @param v * the vector into which the matrix row values will be copied */ public final void getColumn( int column, Vector3f v ) { if ( column == 0 ) { v.x = m00; v.y = m10; v.z = m20; } else if ( column == 1 ) { v.x = m01; v.y = m11; v.z = m21; } else if ( column == 2 ) { v.x = m02; v.y = m12; v.z = m22; } else { throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f3" ) ); } } /** * Copies the matrix values in the specified column into the array * parameter. * * @param column * the matrix column * @param v * the array into which the matrix row values will be copied */ public final void getColumn( int column, float v[] ) { if ( column == 0 ) { v[ 0 ] = m00; v[ 1 ] = m10; v[ 2 ] = m20; } else if ( column == 1 ) { v[ 0 ] = m01; v[ 1 ] = m11; v[ 2 ] = m21; } else if ( column == 2 ) { v[ 0 ] = m02; v[ 1 ] = m12; v[ 2 ] = m22; } else { throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f3" ) ); } } /** * Retrieves the value at the specified row and column of this matrix. * * @param row * the row number to be retrieved (zero indexed) * @param column * the column number to be retrieved (zero indexed) * @return the value at the indexed element. */ public final float getElement( int row, int column ) { switch ( row ) { case 0: switch ( column ) { case 0: return ( this.m00 ); case 1: return ( this.m01 ); case 2: return ( this.m02 ); default: break; } break; case 1: switch ( column ) { case 0: return ( this.m10 ); case 1: return ( this.m11 ); case 2: return ( this.m12 ); default: break; } break; case 2: switch ( column ) { case 0: return ( this.m20 ); case 1: return ( this.m21 ); case 2: return ( this.m22 ); default: break; } break; default: break; } throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f5" ) ); } /** * Sets the specified row of this matrix3f to the three values provided. * * @param row * the row number to be modified (zero indexed) * @param x * the first column element * @param y * the second column element * @param z * the third column element */ public final void setRow( int row, float x, float y, float z ) { switch ( row ) { case 0: this.m00 = x; this.m01 = y; this.m02 = z; break; case 1: this.m10 = x; this.m11 = y; this.m12 = z; break; case 2: this.m20 = x; this.m21 = y; this.m22 = z; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f6" ) ); } } /** * Sets the specified row of this matrix3f to the Vector provided. * * @param row * the row number to be modified (zero indexed) * @param v * the replacement row */ public final void setRow( int row, Vector3f v ) { switch ( row ) { case 0: this.m00 = v.x; this.m01 = v.y; this.m02 = v.z; break; case 1: this.m10 = v.x; this.m11 = v.y; this.m12 = v.z; break; case 2: this.m20 = v.x; this.m21 = v.y; this.m22 = v.z; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f6" ) ); } } /** * Sets the specified row of this matrix3f to the three values provided. * * @param row * the row number to be modified (zero indexed) * @param v * the replacement row */ public final void setRow( int row, float v[] ) { switch ( row ) { case 0: this.m00 = v[ 0 ]; this.m01 = v[ 1 ]; this.m02 = v[ 2 ]; break; case 1: this.m10 = v[ 0 ]; this.m11 = v[ 1 ]; this.m12 = v[ 2 ]; break; case 2: this.m20 = v[ 0 ]; this.m21 = v[ 1 ]; this.m22 = v[ 2 ]; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f6" ) ); } } /** * Sets the specified column of this matrix3f to the three values provided. * * @param column * the column number to be modified (zero indexed) * @param x * the first row element * @param y * the second row element * @param z * the third row element */ public final void setColumn( int column, float x, float y, float z ) { switch ( column ) { case 0: this.m00 = x; this.m10 = y; this.m20 = z; break; case 1: this.m01 = x; this.m11 = y; this.m21 = z; break; case 2: this.m02 = x; this.m12 = y; this.m22 = z; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f9" ) ); } } /** * Sets the specified column of this matrix3f to the vector provided. * * @param column * the column number to be modified (zero indexed) * @param v * the replacement column */ public final void setColumn( int column, Vector3f v ) { switch ( column ) { case 0: this.m00 = v.x; this.m10 = v.y; this.m20 = v.z; break; case 1: this.m01 = v.x; this.m11 = v.y; this.m21 = v.z; break; case 2: this.m02 = v.x; this.m12 = v.y; this.m22 = v.z; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f9" ) ); } } /** * Sets the specified column of this matrix3f to the three values provided. * * @param column * the column number to be modified (zero indexed) * @param v * the replacement column */ public final void setColumn( int column, float v[] ) { switch ( column ) { case 0: this.m00 = v[ 0 ]; this.m10 = v[ 1 ]; this.m20 = v[ 2 ]; break; case 1: this.m01 = v[ 0 ]; this.m11 = v[ 1 ]; this.m21 = v[ 2 ]; break; case 2: this.m02 = v[ 0 ]; this.m12 = v[ 1 ]; this.m22 = v[ 2 ]; break; default: throw new ArrayIndexOutOfBoundsException( VecMathI18N.getString( "Matrix3f9" ) ); } } /** * Performs an SVD normalization of this matrix to calculate and return the * uniform scale factor. If the matrix has non-uniform scale factors, the * largest of the x, y, and z scale factors will be returned. This matrix is * not modified. * * @return the scale factor of this matrix */ public final float getScale() { double[] tmp_rot = new double[ 9 ]; // scratch matrix double[] tmp_scale = new double[ 3 ]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); return ( (float) Matrix3d.max3( tmp_scale ) ); } /** * Adds a scalar to each component of this matrix. * * @param scalar * the scalar adder */ public final void add( float scalar ) { m00 += scalar; m01 += scalar; m02 += scalar; m10 += scalar; m11 += scalar; m12 += scalar; m20 += scalar; m21 += scalar; m22 += scalar; } /** * Adds a scalar to each component of the matrix m1 and places the result * into this. Matrix m1 is not modified. * * @param scalar * the scalar adder. * @param m1 * the original matrix values */ public final void add( float scalar, Matrix3f m1 ) { this.m00 = m1.m00 + scalar; this.m01 = m1.m01 + scalar; this.m02 = m1.m02 + scalar; this.m10 = m1.m10 + scalar; this.m11 = m1.m11 + scalar; this.m12 = m1.m12 + scalar; this.m20 = m1.m20 + scalar; this.m21 = m1.m21 + scalar; this.m22 = m1.m22 + scalar; } /** * Sets the value of this matrix to the matrix sum of matrices m1 and m2. * * @param m1 * the first matrix * @param m2 * the second matrix */ public final void add( Matrix3f m1, Matrix3f m2 ) { this.m00 = m1.m00 + m2.m00; this.m01 = m1.m01 + m2.m01; this.m02 = m1.m02 + m2.m02; this.m10 = m1.m10 + m2.m10; this.m11 = m1.m11 + m2.m11; this.m12 = m1.m12 + m2.m12; this.m20 = m1.m20 + m2.m20; this.m21 = m1.m21 + m2.m21; this.m22 = m1.m22 + m2.m22; } /** * Sets the value of this matrix to the matrix sum of itself and matrix m1. * * @param m1 * the other matrix */ public final void add( Matrix3f m1 ) { this.m00 += m1.m00; this.m01 += m1.m01; this.m02 += m1.m02; this.m10 += m1.m10; this.m11 += m1.m11; this.m12 += m1.m12; this.m20 += m1.m20; this.m21 += m1.m21; this.m22 += m1.m22; } /** * Sets the value of this matrix to the matrix difference of matrices m1 and * m2. * * @param m1 * the first matrix * @param m2 * the second matrix */ public final void sub( Matrix3f m1, Matrix3f m2 ) { this.m00 = m1.m00 - m2.m00; this.m01 = m1.m01 - m2.m01; this.m02 = m1.m02 - m2.m02; this.m10 = m1.m10 - m2.m10; this.m11 = m1.m11 - m2.m11; this.m12 = m1.m12 - m2.m12; this.m20 = m1.m20 - m2.m20; this.m21 = m1.m21 - m2.m21; this.m22 = m1.m22 - m2.m22; } /** * Sets the value of this matrix to the matrix difference of itself and * matrix m1 (this = this - m1). * * @param m1 * the other matrix */ public final void sub( Matrix3f m1 ) { this.m00 -= m1.m00; this.m01 -= m1.m01; this.m02 -= m1.m02; this.m10 -= m1.m10; this.m11 -= m1.m11; this.m12 -= m1.m12; this.m20 -= m1.m20; this.m21 -= m1.m21; this.m22 -= m1.m22; } /** * Sets the value of this matrix to its transpose. */ public final void transpose() { float temp; temp = this.m10; this.m10 = this.m01; this.m01 = temp; temp = this.m20; this.m20 = this.m02; this.m02 = temp; temp = this.m21; this.m21 = this.m12; this.m12 = temp; } /** * Sets the value of this matrix to the transpose of the argument matrix. * * @param m1 * the matrix to be transposed */ public final void transpose( Matrix3f m1 ) { if ( this != m1 ) { this.m00 = m1.m00; this.m01 = m1.m10; this.m02 = m1.m20; this.m10 = m1.m01; this.m11 = m1.m11; this.m12 = m1.m21; this.m20 = m1.m02; this.m21 = m1.m12; this.m22 = m1.m22; } else this.transpose(); } /** * Sets the value of this matrix to the matrix conversion of the (single * precision) quaternion argument. * * @param q1 * the quaternion to be converted */ public final void set( Quat4f q1 ) { this.m00 = 1.0f - 2.0f * q1.y * q1.y - 2.0f * q1.z * q1.z; this.m10 = 2.0f * ( q1.x * q1.y + q1.w * q1.z ); this.m20 = 2.0f * ( q1.x * q1.z - q1.w * q1.y ); this.m01 = 2.0f * ( q1.x * q1.y - q1.w * q1.z ); this.m11 = 1.0f - 2.0f * q1.x * q1.x - 2.0f * q1.z * q1.z; this.m21 = 2.0f * ( q1.y * q1.z + q1.w * q1.x ); this.m02 = 2.0f * ( q1.x * q1.z + q1.w * q1.y ); this.m12 = 2.0f * ( q1.y * q1.z - q1.w * q1.x ); this.m22 = 1.0f - 2.0f * q1.x * q1.x - 2.0f * q1.y * q1.y; } /** * Sets the value of this matrix to the matrix conversion of the (single * precision) axis and angle argument. * * @param a1 * the axis and angle to be converted */ public final void set( AxisAngle4f a1 ) { float mag = (float) Math.sqrt( a1.x * a1.x + a1.y * a1.y + a1.z * a1.z ); if ( mag < EPS ) { m00 = 1.0f; m01 = 0.0f; m02 = 0.0f; m10 = 0.0f; m11 = 1.0f; m12 = 0.0f; m20 = 0.0f; m21 = 0.0f; m22 = 1.0f; } else { mag = 1.0f / mag; float ax = a1.x * mag; float ay = a1.y * mag; float az = a1.z * mag; float sinTheta = (float) Math.sin( (float) a1.angle ); float cosTheta = (float) Math.cos( (float) a1.angle ); float t = (float) 1.0 - cosTheta; float xz = ax * az; float xy = ax * ay; float yz = ay * az; m00 = t * ax * ax + cosTheta; m01 = t * xy - sinTheta * az; m02 = t * xz + sinTheta * ay; m10 = t * xy + sinTheta * az; m11 = t * ay * ay + cosTheta; m12 = t * yz - sinTheta * ax; m20 = t * xz - sinTheta * ay; m21 = t * yz + sinTheta * ax; m22 = t * az * az + cosTheta; } } /** * Sets the value of this matrix to the matrix conversion of the (double * precision) axis and angle argument. * * @param a1 * the axis and angle to be converted */ public final void set( AxisAngle4d a1 ) { double mag = Math.sqrt( a1.x * a1.x + a1.y * a1.y + a1.z * a1.z ); if ( mag < EPS ) { m00 = 1.0f; m01 = 0.0f; m02 = 0.0f; m10 = 0.0f; m11 = 1.0f; m12 = 0.0f; m20 = 0.0f; m21 = 0.0f; m22 = 1.0f; } else { mag = 1.0 / mag; double ax = a1.x * mag; double ay = a1.y * mag; double az = a1.z * mag; double sinTheta = Math.sin( a1.angle ); double cosTheta = Math.cos( a1.angle ); double t = 1.0 - cosTheta; double xz = ax * az; double xy = ax * ay; double yz = ay * az; m00 = (float) ( t * ax * ax + cosTheta ); m01 = (float) ( t * xy - sinTheta * az ); m02 = (float) ( t * xz + sinTheta * ay ); m10 = (float) ( t * xy + sinTheta * az ); m11 = (float) ( t * ay * ay + cosTheta ); m12 = (float) ( t * yz - sinTheta * ax ); m20 = (float) ( t * xz - sinTheta * ay ); m21 = (float) ( t * yz + sinTheta * ax ); m22 = (float) ( t * az * az + cosTheta ); } } /** * Sets the value of this matrix to the matrix conversion of the (single * precision) quaternion argument. * * @param q1 * the quaternion to be converted */ public final void set( Quat4d q1 ) { this.m00 = (float) ( 1.0 - 2.0 * q1.y * q1.y - 2.0 * q1.z * q1.z ); this.m10 = (float) ( 2.0 * ( q1.x * q1.y + q1.w * q1.z ) ); this.m20 = (float) ( 2.0 * ( q1.x * q1.z - q1.w * q1.y ) ); this.m01 = (float) ( 2.0 * ( q1.x * q1.y - q1.w * q1.z ) ); this.m11 = (float) ( 1.0 - 2.0 * q1.x * q1.x - 2.0 * q1.z * q1.z ); this.m21 = (float) ( 2.0 * ( q1.y * q1.z + q1.w * q1.x ) ); this.m02 = (float) ( 2.0 * ( q1.x * q1.z + q1.w * q1.y ) ); this.m12 = (float) ( 2.0 * ( q1.y * q1.z - q1.w * q1.x ) ); this.m22 = (float) ( 1.0 - 2.0 * q1.x * q1.x - 2.0 * q1.y * q1.y ); } /** * Sets the values in this Matrix3f equal to the row-major array parameter * (ie, the first three elements of the array will be copied into the first * row of this matrix, etc.). * * @param m * the single precision array of length 9 */ public final void set( float[] m ) { m00 = m[ 0 ]; m01 = m[ 1 ]; m02 = m[ 2 ]; m10 = m[ 3 ]; m11 = m[ 4 ]; m12 = m[ 5 ]; m20 = m[ 6 ]; m21 = m[ 7 ]; m22 = m[ 8 ]; } /** * Sets the value of this matrix to the value of the Matrix3f argument. * * @param m1 * the source matrix3f */ public final void set( Matrix3f m1 ) { this.m00 = m1.m00; this.m01 = m1.m01; this.m02 = m1.m02; this.m10 = m1.m10; this.m11 = m1.m11; this.m12 = m1.m12; this.m20 = m1.m20; this.m21 = m1.m21; this.m22 = m1.m22; } /** * Sets the value of this matrix to the float value of the Matrix3d * argument. * * @param m1 * the source matrix3d */ public final void set( Matrix3d m1 ) { this.m00 = (float) m1.m00; this.m01 = (float) m1.m01; this.m02 = (float) m1.m02; this.m10 = (float) m1.m10; this.m11 = (float) m1.m11; this.m12 = (float) m1.m12; this.m20 = (float) m1.m20; this.m21 = (float) m1.m21; this.m22 = (float) m1.m22; } /** * Sets the value of this matrix to the matrix inverse of the passed matrix * m1. * * @param m1 * the matrix to be inverted */ public final void invert( Matrix3f m1 ) { invertGeneral( m1 ); } /** * Inverts this matrix in place. */ public final void invert() { invertGeneral( this ); } /** * General invert routine. Inverts m1 and places the result in "this". Note * that this routine handles both the "this" version and the non-"this" * version. * * Also note that since this routine is slow anyway, we won't worry about * allocating a little bit of garbage. */ private final void invertGeneral( Matrix3f m1 ) { double temp[] = new double[ 9 ]; double result[] = new double[ 9 ]; int row_perm[] = new int[ 3 ]; int i; // Use LU decomposition and backsubstitution code specifically // for floating-point 3x3 matrices. // Copy source matrix to t1tmp temp[ 0 ] = (double) m1.m00; temp[ 1 ] = (double) m1.m01; temp[ 2 ] = (double) m1.m02; temp[ 3 ] = (double) m1.m10; temp[ 4 ] = (double) m1.m11; temp[ 5 ] = (double) m1.m12; temp[ 6 ] = (double) m1.m20; temp[ 7 ] = (double) m1.m21; temp[ 8 ] = (double) m1.m22; // Calculate LU decomposition: Is the matrix singular? if ( !luDecomposition( temp, row_perm ) ) { // Matrix has no inverse throw new SingularMatrixException( VecMathI18N.getString( "Matrix3f12" ) ); } // Perform back substitution on the identity matrix for (i = 0; i < 9; i++) result[ i ] = 0.0; result[ 0 ] = 1.0; result[ 4 ] = 1.0; result[ 8 ] = 1.0; luBacksubstitution( temp, row_perm, result ); this.m00 = (float) result[ 0 ]; this.m01 = (float) result[ 1 ]; this.m02 = (float) result[ 2 ]; this.m10 = (float) result[ 3 ]; this.m11 = (float) result[ 4 ]; this.m12 = (float) result[ 5 ]; this.m20 = (float) result[ 6 ]; this.m21 = (float) result[ 7 ]; this.m22 = (float) result[ 8 ]; } /** * Given a 3x3 array "matrix0", this function replaces it with the LU * decomposition of a row-wise permutation of itself. The input parameters * are "matrix0" and "dimen". The array "matrix0" is also an output * parameter. The vector "row_perm[3]" is an output parameter that contains * the row permutations resulting from partial pivoting. The output * parameter "even_row_xchg" is 1 when the number of row exchanges is even, * or -1 otherwise. Assumes data type is always double. * * This function is similar to luDecomposition, except that it is tuned * specifically for 3x3 matrices. * * @return true if the matrix is nonsingular, or false otherwise. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 40-45. // static boolean luDecomposition( double[] matrix0, int[] row_perm ) { double row_scale[] = new double[ 3 ]; // Determine implicit scaling information by looping over rows { int i, j; int ptr, rs; double big, temp; ptr = 0; rs = 0; // For each row ... i = 3; while ( i-- != 0 ) { big = 0.0; // For each column, find the largest element in the row j = 3; while ( j-- != 0 ) { temp = matrix0[ ptr++ ]; temp = Math.abs( temp ); if ( temp > big ) { big = temp; } } // Is the matrix singular? if ( big == 0.0 ) { return false; } row_scale[ rs++ ] = 1.0 / big; } } { int j; int mtx; mtx = 0; // For all columns, execute Crout's method for (j = 0; j < 3; j++) { int i, imax, k; int target, p1, p2; double sum, big, temp; // Determine elements of upper diagonal matrix U for (i = 0; i < j; i++) { target = mtx + ( 3 * i ) + j; sum = matrix0[ target ]; k = i; p1 = mtx + ( 3 * i ); p2 = mtx + j; while ( k-- != 0 ) { sum -= matrix0[ p1 ] * matrix0[ p2 ]; p1++; p2 += 3; } matrix0[ target ] = sum; } // Search for largest pivot element and calculate // intermediate elements of lower diagonal matrix L. big = 0.0; imax = -1; for (i = j; i < 3; i++) { target = mtx + ( 3 * i ) + j; sum = matrix0[ target ]; k = j; p1 = mtx + ( 3 * i ); p2 = mtx + j; while ( k-- != 0 ) { sum -= matrix0[ p1 ] * matrix0[ p2 ]; p1++; p2 += 3; } matrix0[ target ] = sum; // Is this the best pivot so far? if ( ( temp = row_scale[ i ] * Math.abs( sum ) ) >= big ) { big = temp; imax = i; } } if ( imax < 0 ) { throw new RuntimeException( VecMathI18N.getString( "Matrix3f13" ) ); } // Is a row exchange necessary? if ( j != imax ) { // Yes: exchange rows k = 3; p1 = mtx + ( 3 * imax ); p2 = mtx + ( 3 * j ); while ( k-- != 0 ) { temp = matrix0[ p1 ]; matrix0[ p1++ ] = matrix0[ p2 ]; matrix0[ p2++ ] = temp; } // Record change in scale factor row_scale[ imax ] = row_scale[ j ]; } // Record row permutation row_perm[ j ] = imax; // Is the matrix singular if ( matrix0[ ( mtx + ( 3 * j ) + j ) ] == 0.0 ) { return false; } // Divide elements of lower diagonal matrix L by pivot if ( j != ( 3 - 1 ) ) { temp = 1.0 / ( matrix0[ ( mtx + ( 3 * j ) + j ) ] ); target = mtx + ( 3 * ( j + 1 ) ) + j; i = 2 - j; while ( i-- != 0 ) { matrix0[ target ] *= temp; target += 3; } } } } return true; } /** * Solves a set of linear equations. The input parameters "matrix1", and * "row_perm" come from luDecompostionD3x3 and do not change here. The * parameter "matrix2" is a set of column vectors assembled into a 3x3 * matrix of floating-point values. The procedure takes each column of * "matrix2" in turn and treats it as the right-hand side of the matrix * equation Ax = LUx = b. The solution vector replaces the original column * of the matrix. * * If "matrix2" is the identity matrix, the procedure replaces its contents * with the inverse of the matrix from which "matrix1" was originally * derived. */ // // Reference: Press, Flannery, Teukolsky, Vetterling, // _Numerical_Recipes_in_C_, Cambridge University Press, // 1988, pp 44-45. // static void luBacksubstitution( double[] matrix1, int[] row_perm, double[] matrix2 ) { int i, ii, ip, j, k; int rp; int cv, rv; // rp = row_perm; rp = 0; // For each column vector of matrix2 ... for (k = 0; k < 3; k++) { // cv = &(matrix2[0][k]); cv = k; ii = -1; // Forward substitution for (i = 0; i < 3; i++) { double sum; ip = row_perm[ rp + i ]; sum = matrix2[ cv + 3 * ip ]; matrix2[ cv + 3 * ip ] = matrix2[ cv + 3 * i ]; if ( ii >= 0 ) { // rv = &(matrix1[i][0]); rv = i * 3; for (j = ii; j <= i - 1; j++) { sum -= matrix1[ rv + j ] * matrix2[ cv + 3 * j ]; } } else if ( sum != 0.0 ) { ii = i; } matrix2[ cv + 3 * i ] = sum; } // Backsubstitution // rv = &(matrix1[3][0]); rv = 2 * 3; matrix2[ cv + 3 * 2 ] /= matrix1[ rv + 2 ]; rv -= 3; matrix2[ cv + 3 * 1 ] = ( matrix2[ cv + 3 * 1 ] - matrix1[ rv + 2 ] * matrix2[ cv + 3 * 2 ] ) / matrix1[ rv + 1 ]; rv -= 3; matrix2[ cv + 4 * 0 ] = ( matrix2[ cv + 3 * 0 ] - matrix1[ rv + 1 ] * matrix2[ cv + 3 * 1 ] - matrix1[ rv + 2 ] * matrix2[ cv + 3 * 2 ] ) / matrix1[ rv + 0 ]; } } /** * Computes the determinant of this matrix. * * @return the determinant of this matrix */ public final float determinant() { float total; total = this.m00 * ( this.m11 * this.m22 - this.m12 * this.m21 ) + this.m01 * ( this.m12 * this.m20 - this.m10 * this.m22 ) + this.m02 * ( this.m10 * this.m21 - this.m11 * this.m20 ); return total; } /** * Sets the value of this matrix to a scale matrix with the passed scale * amount. * * @param scale * the scale factor for the matrix */ public final void set( float scale ) { this.m00 = scale; this.m01 = (float) 0.0; this.m02 = (float) 0.0; this.m10 = (float) 0.0; this.m11 = scale; this.m12 = (float) 0.0; this.m20 = (float) 0.0; this.m21 = (float) 0.0; this.m22 = scale; } /** * Sets the value of this matrix to a counter clockwise rotation about the x * axis. * * @param angle * the angle to rotate about the X axis in radians */ public final void rotX( float angle ) { float sinAngle, cosAngle; sinAngle = (float) Math.sin( (double) angle ); cosAngle = (float) Math.cos( (double) angle ); this.m00 = (float) 1.0; this.m01 = (float) 0.0; this.m02 = (float) 0.0; this.m10 = (float) 0.0; this.m11 = cosAngle; this.m12 = -sinAngle; this.m20 = (float) 0.0; this.m21 = sinAngle; this.m22 = cosAngle; } /** * Sets the value of this matrix to a counter clockwise rotation about the y * axis. * * @param angle * the angle to rotate about the Y axis in radians */ public final void rotY( float angle ) { float sinAngle, cosAngle; sinAngle = (float) Math.sin( (double) angle ); cosAngle = (float) Math.cos( (double) angle ); this.m00 = cosAngle; this.m01 = (float) 0.0; this.m02 = sinAngle; this.m10 = (float) 0.0; this.m11 = (float) 1.0; this.m12 = (float) 0.0; this.m20 = -sinAngle; this.m21 = (float) 0.0; this.m22 = cosAngle; } /** * Sets the value of this matrix to a counter clockwise rotation about the z * axis. * * @param angle * the angle to rotate about the Z axis in radians */ public final void rotZ( float angle ) { float sinAngle, cosAngle; sinAngle = (float) Math.sin( (double) angle ); cosAngle = (float) Math.cos( (double) angle ); this.m00 = cosAngle; this.m01 = -sinAngle; this.m02 = (float) 0.0; this.m10 = sinAngle; this.m11 = cosAngle; this.m12 = (float) 0.0; this.m20 = (float) 0.0; this.m21 = (float) 0.0; this.m22 = (float) 1.0; } /** * Multiplies each element of this matrix by a scalar. * * @param scalar * the scalar multiplier */ public final void mul( float scalar ) { m00 *= scalar; m01 *= scalar; m02 *= scalar; m10 *= scalar; m11 *= scalar; m12 *= scalar; m20 *= scalar; m21 *= scalar; m22 *= scalar; } /** * Multiplies each element of matrix m1 by a scalar and places the result * into this. Matrix m1 is not modified. * * @param scalar * the scalar multiplier * @param m1 * the original matrix */ public final void mul( float scalar, Matrix3f m1 ) { this.m00 = scalar * m1.m00; this.m01 = scalar * m1.m01; this.m02 = scalar * m1.m02; this.m10 = scalar * m1.m10; this.m11 = scalar * m1.m11; this.m12 = scalar * m1.m12; this.m20 = scalar * m1.m20; this.m21 = scalar * m1.m21; this.m22 = scalar * m1.m22; } /** * Sets the value of this matrix to the result of multiplying itself with * matrix m1. * * @param m1 * the other matrix */ public final void mul( Matrix3f m1 ) { float m00, m01, m02, m10, m11, m12, m20, m21, m22; m00 = this.m00 * m1.m00 + this.m01 * m1.m10 + this.m02 * m1.m20; m01 = this.m00 * m1.m01 + this.m01 * m1.m11 + this.m02 * m1.m21; m02 = this.m00 * m1.m02 + this.m01 * m1.m12 + this.m02 * m1.m22; m10 = this.m10 * m1.m00 + this.m11 * m1.m10 + this.m12 * m1.m20; m11 = this.m10 * m1.m01 + this.m11 * m1.m11 + this.m12 * m1.m21; m12 = this.m10 * m1.m02 + this.m11 * m1.m12 + this.m12 * m1.m22; m20 = this.m20 * m1.m00 + this.m21 * m1.m10 + this.m22 * m1.m20; m21 = this.m20 * m1.m01 + this.m21 * m1.m11 + this.m22 * m1.m21; m22 = this.m20 * m1.m02 + this.m21 * m1.m12 + this.m22 * m1.m22; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m20 = m20; this.m21 = m21; this.m22 = m22; } /** * Sets the value of this matrix to the result of multiplying the two * argument matrices together. * * @param m1 * the first matrix * @param m2 * the second matrix */ public final void mul( Matrix3f m1, Matrix3f m2 ) { if ( this != m1 && this != m2 ) { this.m00 = m1.m00 * m2.m00 + m1.m01 * m2.m10 + m1.m02 * m2.m20; this.m01 = m1.m00 * m2.m01 + m1.m01 * m2.m11 + m1.m02 * m2.m21; this.m02 = m1.m00 * m2.m02 + m1.m01 * m2.m12 + m1.m02 * m2.m22; this.m10 = m1.m10 * m2.m00 + m1.m11 * m2.m10 + m1.m12 * m2.m20; this.m11 = m1.m10 * m2.m01 + m1.m11 * m2.m11 + m1.m12 * m2.m21; this.m12 = m1.m10 * m2.m02 + m1.m11 * m2.m12 + m1.m12 * m2.m22; this.m20 = m1.m20 * m2.m00 + m1.m21 * m2.m10 + m1.m22 * m2.m20; this.m21 = m1.m20 * m2.m01 + m1.m21 * m2.m11 + m1.m22 * m2.m21; this.m22 = m1.m20 * m2.m02 + m1.m21 * m2.m12 + m1.m22 * m2.m22; } else { float m00, m01, m02, m10, m11, m12, m20, m21, m22; m00 = m1.m00 * m2.m00 + m1.m01 * m2.m10 + m1.m02 * m2.m20; m01 = m1.m00 * m2.m01 + m1.m01 * m2.m11 + m1.m02 * m2.m21; m02 = m1.m00 * m2.m02 + m1.m01 * m2.m12 + m1.m02 * m2.m22; m10 = m1.m10 * m2.m00 + m1.m11 * m2.m10 + m1.m12 * m2.m20; m11 = m1.m10 * m2.m01 + m1.m11 * m2.m11 + m1.m12 * m2.m21; m12 = m1.m10 * m2.m02 + m1.m11 * m2.m12 + m1.m12 * m2.m22; m20 = m1.m20 * m2.m00 + m1.m21 * m2.m10 + m1.m22 * m2.m20; m21 = m1.m20 * m2.m01 + m1.m21 * m2.m11 + m1.m22 * m2.m21; m22 = m1.m20 * m2.m02 + m1.m21 * m2.m12 + m1.m22 * m2.m22; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m20 = m20; this.m21 = m21; this.m22 = m22; } } /** * Multiplies this matrix by matrix m1, does an SVD normalization of the * result, and places the result back into this matrix. this = * SVDnorm(this*m1). * * @param m1 * the matrix on the right hand side of the multiplication */ public final void mulNormalize( Matrix3f m1 ) { double[] tmp = new double[ 9 ]; // scratch matrix double[] tmp_rot = new double[ 9 ]; // scratch matrix double[] tmp_scale = new double[ 3 ]; // scratch matrix tmp[ 0 ] = this.m00 * m1.m00 + this.m01 * m1.m10 + this.m02 * m1.m20; tmp[ 1 ] = this.m00 * m1.m01 + this.m01 * m1.m11 + this.m02 * m1.m21; tmp[ 2 ] = this.m00 * m1.m02 + this.m01 * m1.m12 + this.m02 * m1.m22; tmp[ 3 ] = this.m10 * m1.m00 + this.m11 * m1.m10 + this.m12 * m1.m20; tmp[ 4 ] = this.m10 * m1.m01 + this.m11 * m1.m11 + this.m12 * m1.m21; tmp[ 5 ] = this.m10 * m1.m02 + this.m11 * m1.m12 + this.m12 * m1.m22; tmp[ 6 ] = this.m20 * m1.m00 + this.m21 * m1.m10 + this.m22 * m1.m20; tmp[ 7 ] = this.m20 * m1.m01 + this.m21 * m1.m11 + this.m22 * m1.m21; tmp[ 8 ] = this.m20 * m1.m02 + this.m21 * m1.m12 + this.m22 * m1.m22; Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot ); this.m00 = (float) ( tmp_rot[ 0 ] ); this.m01 = (float) ( tmp_rot[ 1 ] ); this.m02 = (float) ( tmp_rot[ 2 ] ); this.m10 = (float) ( tmp_rot[ 3 ] ); this.m11 = (float) ( tmp_rot[ 4 ] ); this.m12 = (float) ( tmp_rot[ 5 ] ); this.m20 = (float) ( tmp_rot[ 6 ] ); this.m21 = (float) ( tmp_rot[ 7 ] ); this.m22 = (float) ( tmp_rot[ 8 ] ); } /** * Multiplies matrix m1 by matrix m2, does an SVD normalization of the * result, and places the result into this matrix. this = SVDnorm(m1*m2). * * @param m1 * the matrix on the left hand side of the multiplication * @param m2 * the matrix on the right hand side of the multiplication */ public final void mulNormalize( Matrix3f m1, Matrix3f m2 ) { double[] tmp = new double[ 9 ]; // scratch matrix double[] tmp_rot = new double[ 9 ]; // scratch matrix double[] tmp_scale = new double[ 3 ]; // scratch matrix tmp[ 0 ] = m1.m00 * m2.m00 + m1.m01 * m2.m10 + m1.m02 * m2.m20; tmp[ 1 ] = m1.m00 * m2.m01 + m1.m01 * m2.m11 + m1.m02 * m2.m21; tmp[ 2 ] = m1.m00 * m2.m02 + m1.m01 * m2.m12 + m1.m02 * m2.m22; tmp[ 3 ] = m1.m10 * m2.m00 + m1.m11 * m2.m10 + m1.m12 * m2.m20; tmp[ 4 ] = m1.m10 * m2.m01 + m1.m11 * m2.m11 + m1.m12 * m2.m21; tmp[ 5 ] = m1.m10 * m2.m02 + m1.m11 * m2.m12 + m1.m12 * m2.m22; tmp[ 6 ] = m1.m20 * m2.m00 + m1.m21 * m2.m10 + m1.m22 * m2.m20; tmp[ 7 ] = m1.m20 * m2.m01 + m1.m21 * m2.m11 + m1.m22 * m2.m21; tmp[ 8 ] = m1.m20 * m2.m02 + m1.m21 * m2.m12 + m1.m22 * m2.m22; Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot ); this.m00 = (float) ( tmp_rot[ 0 ] ); this.m01 = (float) ( tmp_rot[ 1 ] ); this.m02 = (float) ( tmp_rot[ 2 ] ); this.m10 = (float) ( tmp_rot[ 3 ] ); this.m11 = (float) ( tmp_rot[ 4 ] ); this.m12 = (float) ( tmp_rot[ 5 ] ); this.m20 = (float) ( tmp_rot[ 6 ] ); this.m21 = (float) ( tmp_rot[ 7 ] ); this.m22 = (float) ( tmp_rot[ 8 ] ); } /** * Multiplies the transpose of matrix m1 times the transpose of matrix m2, * and places the result into this. * * @param m1 * the matrix on the left hand side of the multiplication * @param m2 * the matrix on the right hand side of the multiplication */ public final void mulTransposeBoth( Matrix3f m1, Matrix3f m2 ) { if ( this != m1 && this != m2 ) { this.m00 = m1.m00 * m2.m00 + m1.m10 * m2.m01 + m1.m20 * m2.m02; this.m01 = m1.m00 * m2.m10 + m1.m10 * m2.m11 + m1.m20 * m2.m12; this.m02 = m1.m00 * m2.m20 + m1.m10 * m2.m21 + m1.m20 * m2.m22; this.m10 = m1.m01 * m2.m00 + m1.m11 * m2.m01 + m1.m21 * m2.m02; this.m11 = m1.m01 * m2.m10 + m1.m11 * m2.m11 + m1.m21 * m2.m12; this.m12 = m1.m01 * m2.m20 + m1.m11 * m2.m21 + m1.m21 * m2.m22; this.m20 = m1.m02 * m2.m00 + m1.m12 * m2.m01 + m1.m22 * m2.m02; this.m21 = m1.m02 * m2.m10 + m1.m12 * m2.m11 + m1.m22 * m2.m12; this.m22 = m1.m02 * m2.m20 + m1.m12 * m2.m21 + m1.m22 * m2.m22; } else { float m00, m01, m02, m10, m11, m12, m20, m21, m22; // vars for temp // result matrix m00 = m1.m00 * m2.m00 + m1.m10 * m2.m01 + m1.m20 * m2.m02; m01 = m1.m00 * m2.m10 + m1.m10 * m2.m11 + m1.m20 * m2.m12; m02 = m1.m00 * m2.m20 + m1.m10 * m2.m21 + m1.m20 * m2.m22; m10 = m1.m01 * m2.m00 + m1.m11 * m2.m01 + m1.m21 * m2.m02; m11 = m1.m01 * m2.m10 + m1.m11 * m2.m11 + m1.m21 * m2.m12; m12 = m1.m01 * m2.m20 + m1.m11 * m2.m21 + m1.m21 * m2.m22; m20 = m1.m02 * m2.m00 + m1.m12 * m2.m01 + m1.m22 * m2.m02; m21 = m1.m02 * m2.m10 + m1.m12 * m2.m11 + m1.m22 * m2.m12; m22 = m1.m02 * m2.m20 + m1.m12 * m2.m21 + m1.m22 * m2.m22; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m20 = m20; this.m21 = m21; this.m22 = m22; } } /** * Multiplies matrix m1 times the transpose of matrix m2, and places the * result into this. * * @param m1 * the matrix on the left hand side of the multiplication * @param m2 * the matrix on the right hand side of the multiplication */ public final void mulTransposeRight( Matrix3f m1, Matrix3f m2 ) { if ( this != m1 && this != m2 ) { this.m00 = m1.m00 * m2.m00 + m1.m01 * m2.m01 + m1.m02 * m2.m02; this.m01 = m1.m00 * m2.m10 + m1.m01 * m2.m11 + m1.m02 * m2.m12; this.m02 = m1.m00 * m2.m20 + m1.m01 * m2.m21 + m1.m02 * m2.m22; this.m10 = m1.m10 * m2.m00 + m1.m11 * m2.m01 + m1.m12 * m2.m02; this.m11 = m1.m10 * m2.m10 + m1.m11 * m2.m11 + m1.m12 * m2.m12; this.m12 = m1.m10 * m2.m20 + m1.m11 * m2.m21 + m1.m12 * m2.m22; this.m20 = m1.m20 * m2.m00 + m1.m21 * m2.m01 + m1.m22 * m2.m02; this.m21 = m1.m20 * m2.m10 + m1.m21 * m2.m11 + m1.m22 * m2.m12; this.m22 = m1.m20 * m2.m20 + m1.m21 * m2.m21 + m1.m22 * m2.m22; } else { float m00, m01, m02, m10, m11, m12, m20, m21, m22; // vars for temp // result matrix m00 = m1.m00 * m2.m00 + m1.m01 * m2.m01 + m1.m02 * m2.m02; m01 = m1.m00 * m2.m10 + m1.m01 * m2.m11 + m1.m02 * m2.m12; m02 = m1.m00 * m2.m20 + m1.m01 * m2.m21 + m1.m02 * m2.m22; m10 = m1.m10 * m2.m00 + m1.m11 * m2.m01 + m1.m12 * m2.m02; m11 = m1.m10 * m2.m10 + m1.m11 * m2.m11 + m1.m12 * m2.m12; m12 = m1.m10 * m2.m20 + m1.m11 * m2.m21 + m1.m12 * m2.m22; m20 = m1.m20 * m2.m00 + m1.m21 * m2.m01 + m1.m22 * m2.m02; m21 = m1.m20 * m2.m10 + m1.m21 * m2.m11 + m1.m22 * m2.m12; m22 = m1.m20 * m2.m20 + m1.m21 * m2.m21 + m1.m22 * m2.m22; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m20 = m20; this.m21 = m21; this.m22 = m22; } } /** * Multiplies the transpose of matrix m1 times matrix m2, and places the * result into this. * * @param m1 * the matrix on the left hand side of the multiplication * @param m2 * the matrix on the right hand side of the multiplication */ public final void mulTransposeLeft( Matrix3f m1, Matrix3f m2 ) { if ( this != m1 && this != m2 ) { this.m00 = m1.m00 * m2.m00 + m1.m10 * m2.m10 + m1.m20 * m2.m20; this.m01 = m1.m00 * m2.m01 + m1.m10 * m2.m11 + m1.m20 * m2.m21; this.m02 = m1.m00 * m2.m02 + m1.m10 * m2.m12 + m1.m20 * m2.m22; this.m10 = m1.m01 * m2.m00 + m1.m11 * m2.m10 + m1.m21 * m2.m20; this.m11 = m1.m01 * m2.m01 + m1.m11 * m2.m11 + m1.m21 * m2.m21; this.m12 = m1.m01 * m2.m02 + m1.m11 * m2.m12 + m1.m21 * m2.m22; this.m20 = m1.m02 * m2.m00 + m1.m12 * m2.m10 + m1.m22 * m2.m20; this.m21 = m1.m02 * m2.m01 + m1.m12 * m2.m11 + m1.m22 * m2.m21; this.m22 = m1.m02 * m2.m02 + m1.m12 * m2.m12 + m1.m22 * m2.m22; } else { float m00, m01, m02, m10, m11, m12, m20, m21, m22; // vars for temp // result matrix m00 = m1.m00 * m2.m00 + m1.m10 * m2.m10 + m1.m20 * m2.m20; m01 = m1.m00 * m2.m01 + m1.m10 * m2.m11 + m1.m20 * m2.m21; m02 = m1.m00 * m2.m02 + m1.m10 * m2.m12 + m1.m20 * m2.m22; m10 = m1.m01 * m2.m00 + m1.m11 * m2.m10 + m1.m21 * m2.m20; m11 = m1.m01 * m2.m01 + m1.m11 * m2.m11 + m1.m21 * m2.m21; m12 = m1.m01 * m2.m02 + m1.m11 * m2.m12 + m1.m21 * m2.m22; m20 = m1.m02 * m2.m00 + m1.m12 * m2.m10 + m1.m22 * m2.m20; m21 = m1.m02 * m2.m01 + m1.m12 * m2.m11 + m1.m22 * m2.m21; m22 = m1.m02 * m2.m02 + m1.m12 * m2.m12 + m1.m22 * m2.m22; this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m20 = m20; this.m21 = m21; this.m22 = m22; } } /** * Performs singular value decomposition normalization of this matrix. */ public final void normalize() { double[] tmp_rot = new double[ 9 ]; // scratch matrix double[] tmp_scale = new double[ 3 ]; // scratch matrix getScaleRotate( tmp_scale, tmp_rot ); this.m00 = (float) tmp_rot[ 0 ]; this.m01 = (float) tmp_rot[ 1 ]; this.m02 = (float) tmp_rot[ 2 ]; this.m10 = (float) tmp_rot[ 3 ]; this.m11 = (float) tmp_rot[ 4 ]; this.m12 = (float) tmp_rot[ 5 ]; this.m20 = (float) tmp_rot[ 6 ]; this.m21 = (float) tmp_rot[ 7 ]; this.m22 = (float) tmp_rot[ 8 ]; } /** * Perform singular value decomposition normalization of matrix m1 and place * the normalized values into this. * * @param m1 * the matrix values to be normalized */ public final void normalize( Matrix3f m1 ) { double[] tmp = new double[ 9 ]; // scratch matrix double[] tmp_rot = new double[ 9 ]; // scratch matrix double[] tmp_scale = new double[ 3 ]; // scratch matrix tmp[ 0 ] = m1.m00; tmp[ 1 ] = m1.m01; tmp[ 2 ] = m1.m02; tmp[ 3 ] = m1.m10; tmp[ 4 ] = m1.m11; tmp[ 5 ] = m1.m12; tmp[ 6 ] = m1.m20; tmp[ 7 ] = m1.m21; tmp[ 8 ] = m1.m22; Matrix3d.compute_svd( tmp, tmp_scale, tmp_rot ); this.m00 = (float) ( tmp_rot[ 0 ] ); this.m01 = (float) ( tmp_rot[ 1 ] ); this.m02 = (float) ( tmp_rot[ 2 ] ); this.m10 = (float) ( tmp_rot[ 3 ] ); this.m11 = (float) ( tmp_rot[ 4 ] ); this.m12 = (float) ( tmp_rot[ 5 ] ); this.m20 = (float) ( tmp_rot[ 6 ] ); this.m21 = (float) ( tmp_rot[ 7 ] ); this.m22 = (float) ( tmp_rot[ 8 ] ); } /** * Perform cross product normalization of this matrix. */ public final void normalizeCP() { float mag = 1.0f / (float) Math .sqrt( m00 * m00 + m10 * m10 + m20 * m20 ); m00 = m00 * mag; m10 = m10 * mag; m20 = m20 * mag; mag = 1.0f / (float) Math.sqrt( m01 * m01 + m11 * m11 + m21 * m21 ); m01 = m01 * mag; m11 = m11 * mag; m21 = m21 * mag; m02 = m10 * m21 - m11 * m20; m12 = m01 * m20 - m00 * m21; m22 = m00 * m11 - m01 * m10; } /** * Perform cross product normalization of matrix m1 and place the normalized * values into this. * * @param m1 * Provides the matrix values to be normalized */ public final void normalizeCP( Matrix3f m1 ) { float mag = 1.0f / (float) Math.sqrt( m1.m00 * m1.m00 + m1.m10 * m1.m10 + m1.m20 * m1.m20 ); m00 = m1.m00 * mag; m10 = m1.m10 * mag; m20 = m1.m20 * mag; mag = 1.0f / (float) Math.sqrt( m1.m01 * m1.m01 + m1.m11 * m1.m11 + m1.m21 * m1.m21 ); m01 = m1.m01 * mag; m11 = m1.m11 * mag; m21 = m1.m21 * mag; m02 = m10 * m21 - m11 * m20; m12 = m01 * m20 - m00 * m21; m22 = m00 * m11 - m01 * m10; } /** * Returns true if all of the data members of Matrix3f m1 are equal to the * corresponding data members in this Matrix3f. * * @param m1 * the matrix with which the comparison is made * @return true or false */ public boolean equals( Matrix3f m1 ) { try { return ( this.m00 == m1.m00 && this.m01 == m1.m01 && this.m02 == m1.m02 && this.m10 == m1.m10 && this.m11 == m1.m11 && this.m12 == m1.m12 && this.m20 == m1.m20 && this.m21 == m1.m21 && this.m22 == m1.m22 ); } catch ( NullPointerException e2 ) { return false; } } /** * Returns true if the Object o1 is of type Matrix3f and all of the data * members of o1 are equal to the corresponding data members in this * Matrix3f. * * @param o1 * the object with which the comparison is made * @return true or false */ @Override public boolean equals( Object o1 ) { try { Matrix3f m2 = (Matrix3f) o1; return ( this.m00 == m2.m00 && this.m01 == m2.m01 && this.m02 == m2.m02 && this.m10 == m2.m10 && this.m11 == m2.m11 && this.m12 == m2.m12 && this.m20 == m2.m20 && this.m21 == m2.m21 && this.m22 == m2.m22 ); } catch ( ClassCastException e1 ) { return false; } catch ( NullPointerException e2 ) { return false; } } /** * Returns true if the L-infinite distance between this matrix and matrix m1 * is less than or equal to the epsilon parameter, otherwise returns false. * The L-infinite distance is equal to MAX[i=0,1,2 ; j=0,1,2 ; * abs(this.m(i,j) - m1.m(i,j)] * * @param m1 * the matrix to be compared to this matrix * @param epsilon * the threshold value */ public boolean epsilonEquals( Matrix3f m1, float epsilon ) { boolean status = true; if ( Math.abs( this.m00 - m1.m00 ) > epsilon ) status = false; if ( Math.abs( this.m01 - m1.m01 ) > epsilon ) status = false; if ( Math.abs( this.m02 - m1.m02 ) > epsilon ) status = false; if ( Math.abs( this.m10 - m1.m10 ) > epsilon ) status = false; if ( Math.abs( this.m11 - m1.m11 ) > epsilon ) status = false; if ( Math.abs( this.m12 - m1.m12 ) > epsilon ) status = false; if ( Math.abs( this.m20 - m1.m20 ) > epsilon ) status = false; if ( Math.abs( this.m21 - m1.m21 ) > epsilon ) status = false; if ( Math.abs( this.m22 - m1.m22 ) > epsilon ) status = false; return ( status ); } /** * Returns a hash code value based on the data values in this object. Two * different Matrix3f objects with identical data values (i.e., * Matrix3f.equals returns true) will return the same hash code value. Two * objects with different data members may return the same hash value, * although this is not likely. * * @return the integer hash code value */ @Override public int hashCode() { long bits = 1L; bits = VecMathUtil.hashFloatBits( bits, m00 ); bits = VecMathUtil.hashFloatBits( bits, m01 ); bits = VecMathUtil.hashFloatBits( bits, m02 ); bits = VecMathUtil.hashFloatBits( bits, m10 ); bits = VecMathUtil.hashFloatBits( bits, m11 ); bits = VecMathUtil.hashFloatBits( bits, m12 ); bits = VecMathUtil.hashFloatBits( bits, m20 ); bits = VecMathUtil.hashFloatBits( bits, m21 ); bits = VecMathUtil.hashFloatBits( bits, m22 ); return VecMathUtil.hashFinish( bits ); } /** * Sets this matrix to all zeros. */ public final void setZero() { m00 = 0.0f; m01 = 0.0f; m02 = 0.0f; m10 = 0.0f; m11 = 0.0f; m12 = 0.0f; m20 = 0.0f; m21 = 0.0f; m22 = 0.0f; } /** * Negates the value of this matrix: this = -this. */ public final void negate() { this.m00 = -this.m00; this.m01 = -this.m01; this.m02 = -this.m02; this.m10 = -this.m10; this.m11 = -this.m11; this.m12 = -this.m12; this.m20 = -this.m20; this.m21 = -this.m21; this.m22 = -this.m22; } /** * Sets the value of this matrix equal to the negation of of the Matrix3f * parameter. * * @param m1 * the source matrix */ public final void negate( Matrix3f m1 ) { this.m00 = -m1.m00; this.m01 = -m1.m01; this.m02 = -m1.m02; this.m10 = -m1.m10; this.m11 = -m1.m11; this.m12 = -m1.m12; this.m20 = -m1.m20; this.m21 = -m1.m21; this.m22 = -m1.m22; } /** * Multiply this matrix by the tuple t and place the result back into the * tuple (t = this*t). * * @param t * the tuple to be multiplied by this matrix and then replaced */ public final void transform( Tuple3f t ) { float x, y, z; x = m00 * t.x + m01 * t.y + m02 * t.z; y = m10 * t.x + m11 * t.y + m12 * t.z; z = m20 * t.x + m21 * t.y + m22 * t.z; t.set( x, y, z ); } /** * Multiply this matrix by the tuple t and and place the result into the * tuple "result" (result = this*t). * * @param t * the tuple to be multiplied by this matrix * @param result * the tuple into which the product is placed */ public final void transform( Tuple3f t, Tuple3f result ) { float x, y; x = m00 * t.x + m01 * t.y + m02 * t.z; y = m10 * t.x + m11 * t.y + m12 * t.z; result.z = m20 * t.x + m21 * t.y + m22 * t.z; result.x = x; result.y = y; } /** * perform SVD (if necessary to get rotational component */ void getScaleRotate( double[] scales, double[] rot ) { double[] tmp = new double[ 9 ]; // scratch matrix tmp[ 0 ] = m00; tmp[ 1 ] = m01; tmp[ 2 ] = m02; tmp[ 3 ] = m10; tmp[ 4 ] = m11; tmp[ 5 ] = m12; tmp[ 6 ] = m20; tmp[ 7 ] = m21; tmp[ 8 ] = m22; Matrix3d.compute_svd( tmp, scales, rot ); return; } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError * if there is not enough memory. * @see java.lang.Cloneable * @since vecmath 1.3 */ @Override public Object clone() { Matrix3f m1 = null; try { m1 = (Matrix3f) super.clone(); } catch ( CloneNotSupportedException e ) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } return m1; } /** * Get the first matrix element in the first row. * * @return Returns the m00. * * @since vecmath 1.5 */ public final float getM00() { return m00; } /** * Set the first matrix element in the first row. * * @param m00 * The m00 to set. * * @since vecmath 1.5 */ public final void setM00( float m00 ) { this.m00 = m00; } /** * Get the second matrix element in the first row. * * @return Returns the m01. * * * @since vecmath 1.5 */ public final float getM01() { return m01; } /** * Set the second matrix element in the first row. * * @param m01 * The m01 to set. * * @since vecmath 1.5 */ public final void setM01( float m01 ) { this.m01 = m01; } /** * Get the third matrix element in the first row. * * @return Returns the m02. * * @since vecmath 1.5 */ public final float getM02() { return m02; } /** * Set the third matrix element in the first row. * * @param m02 * The m02 to set. * * @since vecmath 1.5 */ public final void setM02( float m02 ) { this.m02 = m02; } /** * Get first matrix element in the second row. * * @return Returns the m10. * * @since vecmath 1.5 */ public final float getM10() { return m10; } /** * Set first matrix element in the second row. * * @param m10 * The m10 to set. * * @since vecmath 1.5 */ public final void setM10( float m10 ) { this.m10 = m10; } /** * Get second matrix element in the second row. * * @return Returns the m11. * * @since vecmath 1.5 */ public final float getM11() { return m11; } /** * Set the second matrix element in the second row. * * @param m11 * The m11 to set. * * @since vecmath 1.5 */ public final void setM11( float m11 ) { this.m11 = m11; } /** * Get the third matrix element in the second row. * * @return Returns the m12. * * @since vecmath 1.5 */ public final float getM12() { return m12; } /** * Set the third matrix element in the second row. * * @param m12 * The m12 to set. * @since vecmath 1.5 */ public final void setM12( float m12 ) { this.m12 = m12; } /** * Get the first matrix element in the third row. * * @return Returns the m20. * * @since vecmath 1.5 */ public final float getM20() { return m20; } /** * Set the first matrix element in the third row. * * @param m20 * The m20 to set. * * @since vecmath 1.5 */ public final void setM20( float m20 ) { this.m20 = m20; } /** * Get the second matrix element in the third row. * * @return Returns the m21. * * @since vecmath 1.5 */ public final float getM21() { return m21; } /** * Set the second matrix element in the third row. * * @param m21 * The m21 to set. * * @since vecmath 1.5 */ public final void setM21( float m21 ) { this.m21 = m21; } /** * Get the third matrix element in the third row . * * @return Returns the m22. * * @since vecmath 1.5 */ public final float getM22() { return m22; } /** * Set the third matrix element in the third row. * * @param m22 * The m22 to set. * * @since vecmath 1.5 */ public final void setM22( float m22 ) { this.m22 = m22; } }