package org.apache.lucene.search; /** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import org.apache.lucene.index.DocsAndPositionsEnum; import org.apache.lucene.index.DocsEnum; import org.apache.lucene.index.Term; import org.apache.lucene.index.TermState; import org.apache.lucene.index.TermsEnum; import org.apache.lucene.search.AutomatonTermsEnum.CompiledAutomaton; import org.apache.lucene.util.Attribute; import org.apache.lucene.util.AttributeImpl; import org.apache.lucene.util.AttributeSource; import org.apache.lucene.util.Bits; import org.apache.lucene.util.BytesRef; import org.apache.lucene.util.IntsRef; import org.apache.lucene.util.UnicodeUtil; import org.apache.lucene.util.automaton.Automaton; import org.apache.lucene.util.automaton.BasicAutomata; import org.apache.lucene.util.automaton.BasicOperations; import org.apache.lucene.util.automaton.ByteRunAutomaton; import org.apache.lucene.util.automaton.LevenshteinAutomata; import java.io.IOException; import java.util.ArrayList; import java.util.Comparator; import java.util.List; /** Subclass of TermsEnum for enumerating all terms that are similar * to the specified filter term. * * <p>Term enumerations are always ordered by * {@link #getComparator}. Each term in the enumeration is * greater than all that precede it.</p> */ public final class FuzzyTermsEnum extends TermsEnum { private TermsEnum actualEnum; private BoostAttribute actualBoostAtt; private final BoostAttribute boostAtt = attributes().addAttribute(BoostAttribute.class); private final MaxNonCompetitiveBoostAttribute maxBoostAtt; private final LevenshteinAutomataAttribute dfaAtt; private float bottom; private BytesRef bottomTerm; // TODO: chicken-and-egg private final Comparator<BytesRef> termComparator = BytesRef.getUTF8SortedAsUnicodeComparator(); private final float minSimilarity; private final float scale_factor; private final int termLength; private int maxEdits; private final boolean raw; private final TermsEnum tenum; private final Term term; private final int termText[]; private final int realPrefixLength; /** * Constructor for enumeration of all terms from specified <code>reader</code> which share a prefix of * length <code>prefixLength</code> with <code>term</code> and which have a fuzzy similarity > * <code>minSimilarity</code>. * <p> * After calling the constructor the enumeration is already pointing to the first * valid term if such a term exists. * * @param tenum Delivers terms. * @param atts {@link AttributeSource} created by the rewrite method of {@link MultiTermQuery} * thats contains information about competitive boosts during rewrite. It is also used * to cache DFAs between segment transitions. * @param term Pattern term. * @param minSimilarity Minimum required similarity for terms from the reader. * @param prefixLength Length of required common prefix. Default value is 0. * @throws IOException */ public FuzzyTermsEnum(TermsEnum tenum, AttributeSource atts, Term term, final float minSimilarity, final int prefixLength) throws IOException { if (minSimilarity >= 1.0f && minSimilarity != (int)minSimilarity) throw new IllegalArgumentException("fractional edit distances are not allowed"); if (minSimilarity < 0.0f) throw new IllegalArgumentException("minimumSimilarity cannot be less than 0"); if(prefixLength < 0) throw new IllegalArgumentException("prefixLength cannot be less than 0"); this.tenum = tenum; this.term = term; // convert the string into a utf32 int[] representation for fast comparisons final String utf16 = term.text(); this.termText = new int[utf16.codePointCount(0, utf16.length())]; for (int cp, i = 0, j = 0; i < utf16.length(); i += Character.charCount(cp)) termText[j++] = cp = utf16.codePointAt(i); this.termLength = termText.length; this.dfaAtt = atts.addAttribute(LevenshteinAutomataAttribute.class); //The prefix could be longer than the word. //It's kind of silly though. It means we must match the entire word. this.realPrefixLength = prefixLength > termLength ? termLength : prefixLength; // if minSimilarity >= 1, we treat it as number of edits if (minSimilarity >= 1f) { this.minSimilarity = 1 - (minSimilarity+1) / this.termLength; maxEdits = (int) minSimilarity; raw = true; } else { this.minSimilarity = minSimilarity; // calculate the maximum k edits for this similarity maxEdits = initialMaxDistance(this.minSimilarity, termLength); raw = false; } this.scale_factor = 1.0f / (1.0f - this.minSimilarity); this.maxBoostAtt = atts.addAttribute(MaxNonCompetitiveBoostAttribute.class); bottom = maxBoostAtt.getMaxNonCompetitiveBoost(); bottomTerm = maxBoostAtt.getCompetitiveTerm(); bottomChanged(null, true); } /** * return an automata-based enum for matching up to editDistance from * lastTerm, if possible */ private TermsEnum getAutomatonEnum(int editDistance, BytesRef lastTerm) throws IOException { final List<CompiledAutomaton> runAutomata = initAutomata(editDistance); if (editDistance < runAutomata.size()) { return new AutomatonFuzzyTermsEnum(runAutomata.subList(0, editDistance + 1) .toArray(new CompiledAutomaton[editDistance + 1]), lastTerm); } else { return null; } } /** initialize levenshtein DFAs up to maxDistance, if possible */ private List<CompiledAutomaton> initAutomata(int maxDistance) { final List<CompiledAutomaton> runAutomata = dfaAtt.automata(); if (runAutomata.size() <= maxDistance && maxDistance <= LevenshteinAutomata.MAXIMUM_SUPPORTED_DISTANCE) { LevenshteinAutomata builder = new LevenshteinAutomata(UnicodeUtil.newString(termText, realPrefixLength, termText.length - realPrefixLength)); for (int i = runAutomata.size(); i <= maxDistance; i++) { Automaton a = builder.toAutomaton(i); // constant prefix if (realPrefixLength > 0) { Automaton prefix = BasicAutomata.makeString( UnicodeUtil.newString(termText, 0, realPrefixLength)); a = BasicOperations.concatenate(prefix, a); } runAutomata.add(new CompiledAutomaton(a, true)); } } return runAutomata; } /** swap in a new actual enum to proxy to */ private void setEnum(TermsEnum actualEnum) { this.actualEnum = actualEnum; this.actualBoostAtt = actualEnum.attributes().addAttribute(BoostAttribute.class); } /** * fired when the max non-competitive boost has changed. this is the hook to * swap in a smarter actualEnum */ private void bottomChanged(BytesRef lastTerm, boolean init) throws IOException { int oldMaxEdits = maxEdits; // true if the last term encountered is lexicographically equal or after the bottom term in the PQ boolean termAfter = bottomTerm == null || (lastTerm != null && termComparator.compare(lastTerm, bottomTerm) >= 0); // as long as the max non-competitive boost is >= the max boost // for some edit distance, keep dropping the max edit distance. while (maxEdits > 0 && (termAfter ? bottom >= calculateMaxBoost(maxEdits) : bottom > calculateMaxBoost(maxEdits))) maxEdits--; if (oldMaxEdits != maxEdits || init) { // the maximum n has changed TermsEnum newEnum = getAutomatonEnum(maxEdits, lastTerm); if (newEnum != null) { setEnum(newEnum); } else if (init) { setEnum(new LinearFuzzyTermsEnum()); } } } // for some raw min similarity and input term length, the maximum # of edits private int initialMaxDistance(float minimumSimilarity, int termLen) { return (int) ((1D-minimumSimilarity) * termLen); } // for some number of edits, the maximum possible scaled boost private float calculateMaxBoost(int nEdits) { final float similarity = 1.0f - ((float) nEdits / (float) (termLength)); return (similarity - minSimilarity) * scale_factor; } private BytesRef queuedBottom = null; @Override public BytesRef next() throws IOException { if (queuedBottom != null) { bottomChanged(queuedBottom, false); queuedBottom = null; } BytesRef term = actualEnum.next(); boostAtt.setBoost(actualBoostAtt.getBoost()); final float bottom = maxBoostAtt.getMaxNonCompetitiveBoost(); final BytesRef bottomTerm = maxBoostAtt.getCompetitiveTerm(); if (term != null && (bottom != this.bottom || bottomTerm != this.bottomTerm)) { this.bottom = bottom; this.bottomTerm = bottomTerm; // clone the term before potentially doing something with it // this is a rare but wonderful occurrence anyway queuedBottom = new BytesRef(term); } return term; } // proxy all other enum calls to the actual enum @Override public int docFreq() throws IOException { return actualEnum.docFreq(); } @Override public long totalTermFreq() throws IOException { return actualEnum.totalTermFreq(); } @Override public DocsEnum docs(Bits skipDocs, DocsEnum reuse) throws IOException { return actualEnum.docs(skipDocs, reuse); } @Override public DocsAndPositionsEnum docsAndPositions(Bits skipDocs, DocsAndPositionsEnum reuse) throws IOException { return actualEnum.docsAndPositions(skipDocs, reuse); } @Override public void seek(BytesRef term, TermState state) throws IOException { actualEnum.seek(term, state); } @Override public TermState termState() throws IOException { return actualEnum.termState(); } @Override public Comparator<BytesRef> getComparator() throws IOException { return actualEnum.getComparator(); } @Override public long ord() throws IOException { return actualEnum.ord(); } @Override public SeekStatus seek(BytesRef text, boolean useCache) throws IOException { return actualEnum.seek(text, useCache); } @Override public SeekStatus seek(long ord) throws IOException { return actualEnum.seek(ord); } @Override public BytesRef term() throws IOException { return actualEnum.term(); } /** * Implement fuzzy enumeration with automaton. * <p> * This is the fastest method as opposed to LinearFuzzyTermsEnum: * as enumeration is logarithmic to the number of terms (instead of linear) * and comparison is linear to length of the term (rather than quadratic) */ private class AutomatonFuzzyTermsEnum extends AutomatonTermsEnum { private final ByteRunAutomaton matchers[]; private final BytesRef termRef; private final BytesRef lastTerm; private final BoostAttribute boostAtt = attributes().addAttribute(BoostAttribute.class); public AutomatonFuzzyTermsEnum(CompiledAutomaton compiled[], BytesRef lastTerm) throws IOException { super(tenum, compiled[compiled.length - 1]); this.matchers = new ByteRunAutomaton[compiled.length]; for (int i = 0; i < compiled.length; i++) this.matchers[i] = compiled[i].runAutomaton; this.lastTerm = lastTerm; termRef = new BytesRef(term.text()); } /** finds the smallest Lev(n) DFA that accepts the term. */ @Override protected AcceptStatus accept(BytesRef term) { int ed = matchers.length - 1; if (matches(term, ed)) { // we match the outer dfa // now compute exact edit distance while (ed > 0) { if (matches(term, ed - 1)) { ed--; } else { break; } } // scale to a boost and return (if similarity > minSimilarity) if (ed == 0) { // exact match boostAtt.setBoost(1.0F); return AcceptStatus.YES_AND_SEEK; } else { final int codePointCount = UnicodeUtil.codePointCount(term); final float similarity = 1.0f - ((float) ed / (float) (Math.min(codePointCount, termLength))); if (similarity > minSimilarity) { boostAtt.setBoost((similarity - minSimilarity) * scale_factor); return AcceptStatus.YES_AND_SEEK; } else { return AcceptStatus.NO_AND_SEEK; } } } else { return AcceptStatus.NO_AND_SEEK; } } /** returns true if term is within k edits of the query term */ final boolean matches(BytesRef term, int k) { return k == 0 ? term.equals(termRef) : matchers[k].run(term.bytes, term.offset, term.length); } /** defers to superclass, except can start at an arbitrary location */ @Override protected BytesRef nextSeekTerm(BytesRef term) throws IOException { if (term == null) term = lastTerm; return super.nextSeekTerm(term); } } /** * Implement fuzzy enumeration with linear brute force. */ private class LinearFuzzyTermsEnum extends FilteredTermsEnum { /* Allows us save time required to create a new array * every time similarity is called. */ private int[] d; private int[] p; // this is the text, minus the prefix private final int[] text; private final BoostAttribute boostAtt = attributes().addAttribute(BoostAttribute.class); /** * Constructor for enumeration of all terms from specified <code>reader</code> which share a prefix of * length <code>prefixLength</code> with <code>term</code> and which have a fuzzy similarity > * <code>minSimilarity</code>. * <p> * After calling the constructor the enumeration is already pointing to the first * valid term if such a term exists. * * @param reader Delivers terms. * @param term Pattern term. * @param minSimilarity Minimum required similarity for terms from the reader. Default value is 0.5f. * @param prefixLength Length of required common prefix. Default value is 0. * @throws IOException */ public LinearFuzzyTermsEnum() throws IOException { super(tenum); this.text = new int[termLength - realPrefixLength]; System.arraycopy(termText, realPrefixLength, text, 0, text.length); final String prefix = UnicodeUtil.newString(termText, 0, realPrefixLength); prefixBytesRef = new BytesRef(prefix); this.d = new int[this.text.length + 1]; this.p = new int[this.text.length + 1]; setInitialSeekTerm(prefixBytesRef); } private final BytesRef prefixBytesRef; // used for unicode conversion from BytesRef byte[] to int[] private final IntsRef utf32 = new IntsRef(20); /** * The termCompare method in FuzzyTermEnum uses Levenshtein distance to * calculate the distance between the given term and the comparing term. */ @Override protected final AcceptStatus accept(BytesRef term) { if (term.startsWith(prefixBytesRef)) { UnicodeUtil.UTF8toUTF32(term, utf32); final float similarity = similarity(utf32.ints, realPrefixLength, utf32.length - realPrefixLength); if (similarity > minSimilarity) { boostAtt.setBoost((similarity - minSimilarity) * scale_factor); return AcceptStatus.YES; } else return AcceptStatus.NO; } else { return AcceptStatus.END; } } /****************************** * Compute Levenshtein distance ******************************/ /** * <p>Similarity returns a number that is 1.0f or less (including negative numbers) * based on how similar the Term is compared to a target term. It returns * exactly 0.0f when * <pre> * editDistance > maximumEditDistance</pre> * Otherwise it returns: * <pre> * 1 - (editDistance / length)</pre> * where length is the length of the shortest term (text or target) including a * prefix that are identical and editDistance is the Levenshtein distance for * the two words.</p> * * <p>Embedded within this algorithm is a fail-fast Levenshtein distance * algorithm. The fail-fast algorithm differs from the standard Levenshtein * distance algorithm in that it is aborted if it is discovered that the * minimum distance between the words is greater than some threshold. * * <p>To calculate the maximum distance threshold we use the following formula: * <pre> * (1 - minimumSimilarity) * length</pre> * where length is the shortest term including any prefix that is not part of the * similarity comparison. This formula was derived by solving for what maximum value * of distance returns false for the following statements: * <pre> * similarity = 1 - ((float)distance / (float) (prefixLength + Math.min(textlen, targetlen))); * return (similarity > minimumSimilarity);</pre> * where distance is the Levenshtein distance for the two words. * </p> * <p>Levenshtein distance (also known as edit distance) is a measure of similarity * between two strings where the distance is measured as the number of character * deletions, insertions or substitutions required to transform one string to * the other string. * @param target the target word or phrase * @return the similarity, 0.0 or less indicates that it matches less than the required * threshold and 1.0 indicates that the text and target are identical */ private final float similarity(final int[] target, int offset, int length) { final int m = length; final int n = text.length; if (n == 0) { //we don't have anything to compare. That means if we just add //the letters for m we get the new word return realPrefixLength == 0 ? 0.0f : 1.0f - ((float) m / realPrefixLength); } if (m == 0) { return realPrefixLength == 0 ? 0.0f : 1.0f - ((float) n / realPrefixLength); } final int maxDistance = calculateMaxDistance(m); if (maxDistance < Math.abs(m-n)) { //just adding the characters of m to n or vice-versa results in //too many edits //for example "pre" length is 3 and "prefixes" length is 8. We can see that //given this optimal circumstance, the edit distance cannot be less than 5. //which is 8-3 or more precisely Math.abs(3-8). //if our maximum edit distance is 4, then we can discard this word //without looking at it. return Float.NEGATIVE_INFINITY; } // init matrix d for (int i = 0; i <=n; ++i) { p[i] = i; } // start computing edit distance for (int j = 1; j<=m; ++j) { // iterates through target int bestPossibleEditDistance = m; final int t_j = target[offset+j-1]; // jth character of t d[0] = j; for (int i=1; i<=n; ++i) { // iterates through text // minimum of cell to the left+1, to the top+1, diagonally left and up +(0|1) if (t_j != text[i-1]) { d[i] = Math.min(Math.min(d[i-1], p[i]), p[i-1]) + 1; } else { d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1), p[i-1]); } bestPossibleEditDistance = Math.min(bestPossibleEditDistance, d[i]); } //After calculating row i, the best possible edit distance //can be found by found by finding the smallest value in a given column. //If the bestPossibleEditDistance is greater than the max distance, abort. if (j > maxDistance && bestPossibleEditDistance > maxDistance) { //equal is okay, but not greater //the closest the target can be to the text is just too far away. //this target is leaving the party early. return Float.NEGATIVE_INFINITY; } // copy current distance counts to 'previous row' distance counts: swap p and d int _d[] = p; p = d; d = _d; } // our last action in the above loop was to switch d and p, so p now // actually has the most recent cost counts // this will return less than 0.0 when the edit distance is // greater than the number of characters in the shorter word. // but this was the formula that was previously used in FuzzyTermEnum, // so it has not been changed (even though minimumSimilarity must be // greater than 0.0) return 1.0f - ((float)p[n] / (float) (realPrefixLength + Math.min(n, m))); } /** * The max Distance is the maximum Levenshtein distance for the text * compared to some other value that results in score that is * better than the minimum similarity. * @param m the length of the "other value" * @return the maximum levenshtein distance that we care about */ private int calculateMaxDistance(int m) { return raw ? maxEdits : Math.min(maxEdits, (int)((1-minSimilarity) * (Math.min(text.length, m) + realPrefixLength))); } } /** @lucene.internal */ public float getMinSimilarity() { return minSimilarity; } /** @lucene.internal */ public float getScaleFactor() { return scale_factor; } /** @lucene.internal */ public static interface LevenshteinAutomataAttribute extends Attribute { public List<CompiledAutomaton> automata(); } /** @lucene.internal */ public static final class LevenshteinAutomataAttributeImpl extends AttributeImpl implements LevenshteinAutomataAttribute { private final List<CompiledAutomaton> automata = new ArrayList<CompiledAutomaton>(); public List<CompiledAutomaton> automata() { return automata; } @Override public void clear() { automata.clear(); } @Override public int hashCode() { return automata.hashCode(); } @Override public boolean equals(Object other) { if (this == other) return true; if (!(other instanceof LevenshteinAutomataAttributeImpl)) return false; return automata.equals(((LevenshteinAutomataAttributeImpl) other).automata); } @Override public void copyTo(AttributeImpl target) { final List<CompiledAutomaton> targetAutomata = ((LevenshteinAutomataAttribute) target).automata(); targetAutomata.clear(); targetAutomata.addAll(automata); } } }