/* * Copyright 2014 the original author or authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package yarn.montecarlo; import java.nio.ByteBuffer; import java.util.Arrays; /** * @author Oleg Zhurakousky * */ public class MathUtils { public static double getMean(ByteBuffer simulationResults) { double sum = 0.0; int size = simulationResults.capacity()/8; simulationResults.rewind(); for (int i = 0; i < size; i++) { double f = simulationResults.getDouble(); sum += f; } return (sum/size); } public static double getMedian(ByteBuffer simulationResults) { double[] b = new double[simulationResults.capacity()/8]; simulationResults.rewind(); simulationResults.asDoubleBuffer().get(b); Arrays.sort(b); if (b.length % 2 == 0) { return (b[(b.length / 2) - 1] + b[b.length / 2]) / 2.0; } else { return b[b.length / 2]; } } public static double getStdDev(ByteBuffer simulationResults) { return Math.sqrt(getVariance(simulationResults)); } public static double getVariance(ByteBuffer simulationResults) { double mean = getMean(simulationResults); double temp = 0.0; int size = simulationResults.capacity()/8; simulationResults.rewind(); for (int i = 0; i < size; i++) { double f = simulationResults.getDouble(); temp += (mean-f)*(mean-f); } return (temp/size); } public static double compute(double p, double mu, double sigma) { if(p < 0 || p > 1) throw new RuntimeException("The probality p must be bigger than 0 and smaller than 1"); if(sigma < 0) throw new RuntimeException("The standard deviation sigma must be positive"); if(p == 0) return Double.NEGATIVE_INFINITY; if(p == 1) return Double.POSITIVE_INFINITY; if(sigma == 0) return mu; double q, r, val; q = p - 0.5; /* 0.075 <= p <= 0.925 */ if(Math.abs(q) <= .425) { r = .180625 - q * q; val = q * (((((((r * 2509.0809287301226727 + 33430.575583588128105) * r + 67265.770927008700853) * r + 45921.953931549871457) * r + 13731.693765509461125) * r + 1971.5909503065514427) * r + 133.14166789178437745) * r + 3.387132872796366608) / (((((((r * 5226.495278852854561 + 28729.085735721942674) * r + 39307.89580009271061) * r + 21213.794301586595867) * r + 5394.1960214247511077) * r + 687.1870074920579083) * r + 42.313330701600911252) * r + 1); } /* closer than 0.075 from {0,1} boundary */ else { /* r = min(p, 1-p) < 0.075 */ if (q > 0) r = 1 - p; else r = p; r = Math.sqrt(-Math.log(r)); /* r = sqrt(-log(r)) <==> min(p, 1-p) = exp( - r^2 ) */ if (r <= 5) { /* <==> min(p,1-p) >= exp(-25) ~= 1.3888e-11 */ r += -1.6; val = (((((((r * 7.7454501427834140764e-4 + .0227238449892691845833) * r + .24178072517745061177) * r + 1.27045825245236838258) * r + 3.64784832476320460504) * r + 5.7694972214606914055) * r + 4.6303378461565452959) * r + 1.42343711074968357734) / (((((((r * 1.05075007164441684324e-9 + 5.475938084995344946e-4) * r + .0151986665636164571966) * r + .14810397642748007459) * r + .68976733498510000455) * r + 1.6763848301838038494) * r + 2.05319162663775882187) * r + 1); } else { /* very close to 0 or 1 */ r += -5; val = (((((((r * 2.01033439929228813265e-7 + 2.71155556874348757815e-5) * r + .0012426609473880784386) * r + .026532189526576123093) * r + .29656057182850489123) * r + 1.7848265399172913358) * r + 5.4637849111641143699) * r + 6.6579046435011037772) / (((((((r * 2.04426310338993978564e-15 + 1.4215117583164458887e-7) * r + 1.8463183175100546818e-5) * r + 7.868691311456132591e-4) * r + .0148753612908506148525) * r + .13692988092273580531) * r + .59983220655588793769) * r + 1); } if (q < 0.0) { val = -val; } } return mu + sigma * val; } }