/* * @(#)ArrayBlockingQueue.java 1.14 06/06/01 * * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package org.texai.util; import java.util.AbstractQueue; import java.util.Collection; import java.util.Iterator; import java.util.NoSuchElementException; import java.util.concurrent.BlockingQueue; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; import net.jcip.annotations.ThreadSafe; /** * A bounded {@linkplain BlockingQueue blocking queue} backed by an * array. This queue orders elements FIFO (first-in-first-out). The * <em>head</em> of the queue is that element that has been on the * queue the longest time. The <em>tail</em> of the queue is that * element that has been on the queue the shortest time. New elements * are inserted at the tail of the queue, and the queue retrieval * operations obtain elements at the head of the queue. * * <p>This is a classic "bounded buffer", in which a * fixed-sized array holds elements inserted by producers and * extracted by consumers. Once created, the capacity cannot be * increased. Attempts to <tt>put</tt> an element into a full queue * will result in the operation blocking; attempts to <tt>take</tt> an * element from an empty queue will similarly block. * * <p> This class supports an optional fairness policy for ordering * waiting producer and consumer threads. By default, this ordering * is not guaranteed. However, a queue constructed with fairness set * to <tt>true</tt> grants threads access in FIFO order. Fairness * generally decreases throughput but reduces variability and avoids * starvation. * * <p>This class and its iterator implement all of the * <em>optional</em> methods of the {@link Collection} and {@link * Iterator} interfaces. * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @since 1.5 * @author Doug Lea * @param <E> the type of elements held in this collection */ @ThreadSafe @SuppressWarnings("PMD") public final class MyArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E> { /** The queued items */ private final E[] items; /** items index for next take, poll or remove */ private int takeIndex; /** items index for next put, offer, or add. */ private int putIndex; /** Number of items in the queue */ private int count; /* * Concurrency control uses the classic two-condition algorithm * found in any textbook. */ /** Main lock guarding all access */ private final ReentrantLock lock; /** Condition for waiting takes */ private final Condition notEmpty; /** Condition for waiting puts */ private final Condition notFull; /** Provides a holder for a mutable boolean value */ public static class BooleanHolder { /** the mutable boolean value */ private boolean value = false; /** Constructs a new BooleanHolder instance. * * @param value the initial value */ BooleanHolder(final boolean value) { this.value = value; } /** Gets the mutable boolean value. * * @return the mutable boolean value */ public boolean getValue() { return value; } /** Sets the mutable boolean value. * * @param value the mutable boolean value */ public void setValue(final boolean value) { this.value = value; } } /** Retrieves and removes the head of this queue, waiting if necessary * until an element becomes available. * * @param isBusy the indicator whether the consuming thread is busy processing the taken element * @return the head of this queue * @throws InterruptedException if interrupted while waiting */ public E take(final BooleanHolder isBusy) throws InterruptedException { final ReentrantLock myLock = lock; myLock.lockInterruptibly(); try { try { while (count == 0) { notEmpty.await(); } } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread throw ie; } E x = extract(); isBusy.setValue(true); return x; } finally { myLock.unlock(); } } // Internal helper methods /** * Circularly increment i. * @param i the index * @return the index */ @SuppressWarnings("AssignmentToMethodParameter") final int inc(int i) { return (++i == items.length) ? 0 : i; } /** * Inserts element at current put position, advances, and signals. * Call only when holding lock. * @param x the element to insertg */ private void insert(final E x) { items[putIndex] = x; putIndex = inc(putIndex); ++count; notEmpty.signal(); } /** * Extracts element at current take position, advances, and signals. * Call only when holding lock. * @return the extracted element */ private E extract() { final E[] myItems = items; E x = myItems[takeIndex]; myItems[takeIndex] = null; takeIndex = inc(takeIndex); --count; notFull.signal(); return x; } /** * Utility for remove and iterator.remove: Delete item at position i. * Call only when holding lock. * @param i the index */ @SuppressWarnings("AssignmentToMethodParameter") void removeAt(int i) { final E[] myItems = items; // if removing front item, just advance if (i == takeIndex) { myItems[takeIndex] = null; takeIndex = inc(takeIndex); } else { // slide over all others up through putIndex. for (;;) { int nexti = inc(i); if (nexti != putIndex) { myItems[i] = myItems[nexti]; i = nexti; } else { myItems[i] = null; putIndex = i; break; } } } --count; notFull.signal(); } /** * Creates an <tt>ArrayBlockingQueue</tt> with the given (fixed) * capacity and default access policy. * * @param capacity the capacity of this queue * @throws IllegalArgumentException if <tt>capacity</tt> is less than 1 */ public MyArrayBlockingQueue(final int capacity) { this(capacity, false); } /** * Creates an <tt>ArrayBlockingQueue</tt> with the given (fixed) * capacity and the specified access policy. * * @param capacity the capacity of this queue * @param fair if <tt>true</tt> then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; * if <tt>false</tt> the access order is unspecified. * @throws IllegalArgumentException if <tt>capacity</tt> is less than 1 */ @SuppressWarnings("unchecked") public MyArrayBlockingQueue(final int capacity, final boolean fair) { if (capacity <= 0) { throw new IllegalArgumentException(); } this.items = (E[]) new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); } /** * Creates an <tt>ArrayBlockingQueue</tt> with the given (fixed) * capacity, the specified access policy and initially containing the * elements of the given collection, * added in traversal order of the collection's iterator. * * @param capacity the capacity of this queue * @param fair if <tt>true</tt> then queue accesses for threads blocked * on insertion or removal, are processed in FIFO order; * if <tt>false</tt> the access order is unspecified. * @param c the collection of elements to initially contain * @throws IllegalArgumentException if <tt>capacity</tt> is less than * <tt>c.size()</tt>, or less than 1. * @throws NullPointerException if the specified collection or any * of its elements are null */ public MyArrayBlockingQueue(final int capacity, final boolean fair, Collection<? extends E> c) { this(capacity, fair); if (capacity < c.size()) { throw new IllegalArgumentException(); } for (Iterator<? extends E> it = c.iterator(); it.hasNext();) { add(it.next()); } } /** * Inserts the specified element at the tail of this queue if it is * possible to do so immediately without exceeding the queue's capacity, * returning <tt>true</tt> upon success and <tt>false</tt> if this queue * is full. This method is generally preferable to method {@link #add}, * which can fail to insert an element only by throwing an exception. * * @throws NullPointerException if the specified element is null */ @Override public boolean offer(final E e) { if (e == null) { throw new NullPointerException(); } final ReentrantLock myLock = lock; myLock.lock(); try { if (count == items.length) { return false; } else { insert(e); return true; } } finally { myLock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting * for space to become available if the queue is full. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ @Override public void put(final E e) throws InterruptedException { if (e == null) { throw new NullPointerException(); } final E[] myItems = items; final ReentrantLock myLock = lock; myLock.lockInterruptibly(); try { try { while (count == myItems.length) { notFull.await(); } } catch (InterruptedException ie) { notFull.signal(); // propagate to non-interrupted thread throw ie; } insert(e); } finally { myLock.unlock(); } } /** * Inserts the specified element at the tail of this queue, waiting * up to the specified wait time for space to become available if * the queue is full. * * @throws InterruptedException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ @Override public boolean offer(final E e, final long timeout, final TimeUnit unit) throws InterruptedException { if (e == null) { throw new NullPointerException(); } long nanos = unit.toNanos(timeout); final ReentrantLock myLock = lock; myLock.lockInterruptibly(); try { for (;;) { if (count != items.length) { insert(e); return true; } if (nanos <= 0) { return false; } try { nanos = notFull.awaitNanos(nanos); } catch (InterruptedException ie) { notFull.signal(); // propagate to non-interrupted thread throw ie; } } } finally { myLock.unlock(); } } @Override public E poll() { final ReentrantLock myLock = lock; myLock.lock(); try { if (count == 0) { return null; } E x = extract(); return x; } finally { myLock.unlock(); } } @Override public E take() throws InterruptedException { final ReentrantLock myLock = lock; myLock.lockInterruptibly(); try { try { while (count == 0) { notEmpty.await(); } } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread throw ie; } E x = extract(); return x; } finally { myLock.unlock(); } } @Override public E poll(final long timeout, final TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock myLock = lock; myLock.lockInterruptibly(); try { for (;;) { if (count != 0) { E x = extract(); return x; } if (nanos <= 0) { return null; } try { nanos = notEmpty.awaitNanos(nanos); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to non-interrupted thread throw ie; } } } finally { myLock.unlock(); } } @Override public E peek() { final ReentrantLock myLock = lock; myLock.lock(); try { return (count == 0) ? null : items[takeIndex]; } finally { myLock.unlock(); } } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue */ @Override public int size() { final ReentrantLock myLock = lock; myLock.lock(); try { return count; } finally { myLock.unlock(); } } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of additional elements that this queue can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current <tt>size</tt> of this queue. * * <p>Note that you <em>cannot</em> always tell if an attempt to insert * an element will succeed by inspecting <tt>remainingCapacity</tt> * because it may be the case that another thread is about to * insert or remove an element. */ @Override public int remainingCapacity() { final ReentrantLock myLock = lock; myLock.lock(); try { return items.length - count; } finally { myLock.unlock(); } } /** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element <tt>e</tt> such * that <tt>o.equals(e)</tt>, if this queue contains one or more such * elements. * Returns <tt>true</tt> if this queue contained the specified element * (or equivalently, if this queue changed as a result of the call). * * @param o element to be removed from this queue, if present * @return <tt>true</tt> if this queue changed as a result of the call */ @Override public boolean remove(final Object o) { if (o == null) { return false; } final E[] myItems = this.items; final ReentrantLock myLock = lock; myLock.lock(); try { int i = takeIndex; int k = 0; for (;;) { if (k++ >= count) { return false; } if (o.equals(myItems[i])) { removeAt(i); return true; } i = inc(i); } } finally { myLock.unlock(); } } /** * Returns <tt>true</tt> if this queue contains the specified element. * More formally, returns <tt>true</tt> if and only if this queue contains * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>. * * @param o object to be checked for containment in this queue * @return <tt>true</tt> if this queue contains the specified element */ @Override public boolean contains(final Object o) { if (o == null) { return false; } final E[] myItems = items; final ReentrantLock myLock = lock; myLock.lock(); try { int i = takeIndex; int k = 0; while (k++ < count) { if (o.equals(myItems[i])) { return true; } i = inc(i); } return false; } finally { myLock.unlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence. * * <p>The returned array will be "safe" in that no references to it are * maintained by this queue. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this queue */ @Override public Object[] toArray() { final E[] myItems = items; final ReentrantLock myLock = lock; myLock.lock(); try { Object[] a = new Object[count]; int k = 0; int i = takeIndex; while (k < count) { a[k++] = myItems[i]; i = inc(i); } return a; } finally { myLock.unlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the queue fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this queue. * * <p>If this queue fits in the specified array with room to spare * (i.e., the array has more elements than this queue), the element in * the array immediately following the end of the queue is set to * <tt>null</tt>. * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose <tt>x</tt> is a queue known to contain only strings. * The following code can be used to dump the queue into a newly * allocated array of <tt>String</tt>: * * <pre> * String[] y = x.toArray(new String[0]);</pre> * * Note that <tt>toArray(new Object[0])</tt> is identical in function to * <tt>toArray()</tt>. * * @param <T> The array element type * @param a the array into which the elements of the queue are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this queue * @throws NullPointerException if the specified array is null */ @SuppressWarnings({"unchecked", "AssignmentToMethodParameter"}) @Override public <T> T[] toArray(T[] a) { final E[] myItems = items; final ReentrantLock myLock = lock; myLock.lock(); try { if (a.length < count) { a = (T[]) java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), count); } int k = 0; int i = takeIndex; while (k < count) { a[k++] = (T) myItems[i]; i = inc(i); } if (a.length > count) { a[count] = null; } return a; } finally { myLock.unlock(); } } /** Returns a string representation of this object. * * @return a string representation of this object */ @Override public String toString() { final ReentrantLock myLock = lock; myLock.lock(); try { return super.toString(); } finally { myLock.unlock(); } } /** * Atomically removes all of the elements from this queue. * The queue will be empty after this call returns. */ @Override public void clear() { @SuppressWarnings({"MismatchedReadAndWriteOfArray", "UnusedAssignment"}) final E[] myItems = items; final ReentrantLock myLock = lock; myLock.lock(); try { int i = takeIndex; int k = count; while (k-- > 0) { myItems[i] = null; i = inc(i); } count = 0; putIndex = 0; takeIndex = 0; notFull.signalAll(); } finally { myLock.unlock(); } } /** Drains to the given collection. * * @param c the given collection * @return the number of elements drained */ @Override public int drainTo(final Collection<? super E> c) { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } final E[] myItems = items; final ReentrantLock myLock = lock; myLock.lock(); try { int i = takeIndex; int n = 0; int max = count; while (n < max) { c.add(myItems[i]); myItems[i] = null; i = inc(i); ++n; } if (n > 0) { count = 0; putIndex = 0; takeIndex = 0; notFull.signalAll(); } return n; } finally { myLock.unlock(); } } /** Drains to the given collection. * * @param c the given collection * @param maxElements the maximum number of elements to drain * @return the number of elements drained */ @Override public int drainTo(final Collection<? super E> c, final int maxElements) { if (c == null) { throw new NullPointerException(); } if (c == this) { throw new IllegalArgumentException(); } if (maxElements <= 0) { return 0; } final E[] myItems = items; final ReentrantLock myLock = lock; myLock.lock(); try { int i = takeIndex; int n = 0; int max = (maxElements < count) ? maxElements : count; while (n < max) { c.add(myItems[i]); myItems[i] = null; i = inc(i); ++n; } if (n > 0) { count -= n; takeIndex = i; notFull.signalAll(); } return n; } finally { myLock.unlock(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The returned <tt>Iterator</tt> is a "weakly consistent" iterator that * will never throw {@link ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence */ @Override public Iterator<E> iterator() { final ReentrantLock myLock = lock; myLock.lock(); try { return new Itr(); } finally { myLock.unlock(); } } /** * Iterator for ArrayBlockingQueue */ private class Itr implements Iterator<E> { /** * Index of element to be returned by next, * or a negative number if no such. */ private int nextIndex; /** * nextItem holds on to item fields because once we claim * that an element exists in hasNext(), we must return it in * the following next() call even if it was in the process of * being removed when hasNext() was called. */ private E nextItem; /** * Index of element returned by most recent call to next. * Reset to -1 if this element is deleted by a call to remove. */ private int lastRet; /** Constructs a new Itr instance. */ Itr() { lastRet = -1; if (count == 0) { nextIndex = -1; } else { nextIndex = takeIndex; nextItem = items[takeIndex]; } } @Override public boolean hasNext() { /* * No sync. We can return true by mistake here * only if this iterator passed across threads, * which we don't support anyway. */ return nextIndex >= 0; } /** * Checks whether nextIndex is valid; if so setting nextItem. * Stops iterator when either hits putIndex or sees null item. */ private void checkNext() { if (nextIndex == putIndex) { nextIndex = -1; nextItem = null; } else { nextItem = items[nextIndex]; if (nextItem == null) { nextIndex = -1; } } } @Override public E next() { final ReentrantLock myLock = MyArrayBlockingQueue.this.lock; myLock.lock(); try { if (nextIndex < 0) { throw new NoSuchElementException(); } lastRet = nextIndex; E x = nextItem; nextIndex = inc(nextIndex); checkNext(); return x; } finally { myLock.unlock(); } } @Override public void remove() { final ReentrantLock myLock = MyArrayBlockingQueue.this.lock; myLock.lock(); try { int i = lastRet; if (i == -1) { throw new IllegalStateException(); } lastRet = -1; int ti = takeIndex; removeAt(i); // back up cursor (reset to front if was first element) nextIndex = (i == ti) ? takeIndex : i; checkNext(); } finally { myLock.unlock(); } } } }