/** * Copyright 2013-2015 Pierre Merienne * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.streaminer.stream.classifier; import org.streaminer.util.math.MathUtil; /** * Balanced Winnow Classifier * * @see http://www.cs.cmu.edu/~vitor/papers/kdd06_final.pdf * @author pmerienne * */ public class BWinnowClassifier extends SimpleClassifier<Boolean> { private static final long serialVersionUID = -5163481593640555140L; /** * Positive model */ private double[] u; /** * Negative model */ private double[] v; private double promotion = 1.5; private double demotion = 0.5; private double threshold = 1.0; public BWinnowClassifier() { } public BWinnowClassifier(double promotion, double demotion, double threshold) { this.promotion = promotion; this.demotion = demotion; this.threshold = threshold; } @Override public Boolean predict(double[] features) { if (this.u == null || this.v == null) { init(features.length); } Double evaluation = MathUtil.dot(features, this.u) - MathUtil.dot(features, this.v) - this.threshold; Boolean prediction = evaluation >= 0 ? Boolean.TRUE : Boolean.FALSE; return prediction; } @Override public void learn(Boolean label, double[] features) { Boolean predictedLabel = predict(features); // The model is updated only when a mistake is made if (!label.equals(predictedLabel)) { for (int i = 0; i < features.length; i++) { if (features[i] > 0) { if (predictedLabel) { // Demotion step this.u[i] = this.u[i] * this.demotion; this.v[i] = this.v[i] * this.promotion; } else { // Promotion step this.u[i] = this.u[i] * this.promotion; this.v[i] = this.v[i] * this.demotion; } } } } } protected void init(int featureSize) { // Init models this.u = new double[featureSize]; this.v = new double[featureSize]; for (int i = 0; i < featureSize; i++) { this.u[i] = 2 * this.threshold / featureSize; this.v[i] = this.threshold / featureSize; } } public void reset() { this.u = null; this.v = null; } public double[] getU() { return u; } public void setU(double[] u) { this.u = u; } public double[] getV() { return v; } public void setV(double[] v) { this.v = v; } public double getPromotion() { return promotion; } public void setPromotion(double promotion) { this.promotion = promotion; } public double getDemotion() { return demotion; } public void setDemotion(double demotion) { this.demotion = demotion; } public double getThreshold() { return threshold; } public void setThreshold(double threshold) { this.threshold = threshold; } @Override public String toString() { return "BWinnowClassifier [promotion=" + promotion + ", demotion=" + demotion + ", threshold=" + threshold + "]"; } }