/* * Copyright (C) 2017 Drakeet <drakeet.me@gmail.com> * * This file is part of rebase-android * * rebase-android is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * rebase-android is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with rebase-android. If not, see <http://www.gnu.org/licenses/>. */ package com.drakeet.rebase.tool.guava; import android.support.annotation.Nullable; import java.io.Serializable; import java.util.Set; import static com.drakeet.rebase.tool.guava.Preconditions.checkNotNull; /** * An immutable object that may contain a non-null reference to another object. Each instance of * this type either contains a non-null reference, or contains nothing (in which case we say that * the reference is "absent"); it is never said to "contain {@code * null}". * * <p>A non-null {@code Optional<T>} reference can be used as a replacement for a nullable {@code * T} * reference. It allows you to represent "a {@code T} that must be present" and a * "a {@code T} that might be absent" as two distinct types in your program, which can aid clarity. * * <p>Some uses of this class include * * <ul> * <li>As a method return type, as an alternative to returning {@code null} to indicate that no * value was available * <li>To distinguish between "unknown" (for example, not present in a map) and "known to have no * value" (present in the map, with value {@code Optional.absent()}) * <li>To wrap nullable references for storage in a collection that does not support {@code null} * (though there are * <a href="https://github.com/google/guava/wiki/LivingWithNullHostileCollections">several other * approaches to this</a> that should be considered first) * </ul> * * <p>A common alternative to using this class is to find or create a suitable * <a href="http://en.wikipedia.org/wiki/Null_Object_pattern">null object</a> for the type in * question. * * <p>This class is not intended as a direct analogue of any existing "option" or "maybe" construct * from other programming environments, though it may bear some similarities. * * <p><b>Comparison to {@code java.util.Optional} (JDK 8 and higher):</b> A new {@code Optional} * class was added for Java 8. The two classes are extremely similar, but incompatible (they cannot * share a common supertype). <i>All</i> known differences are listed either here or with the * relevant methods below. * * <ul> * <li>This class is serializable; {@code java.util.Optional} is not. * <li>{@code java.util.Optional} has the additional methods {@code ifPresent}, {@code filter}, * {@code flatMap}, and {@code orElseThrow}. * <li>{@code java.util} offers the primitive-specialized versions {@code OptionalInt}, {@code * OptionalLong} and {@code OptionalDouble}, the use of which is recommended; Guava does not * have these. * </ul> * * <p><b>There are no plans to deprecate this class in the foreseeable future.</b> However, we do * gently recommend that you prefer the new, standard Java class whenever possible. * * <p>See the Guava User Guide article on * <a href="https://github.com/google/guava/wiki/UsingAndAvoidingNullExplained#optional">using * {@code Optional}</a>. * * @param <T> the type of instance that can be contained. {@code Optional} is naturally covariant * on * this type, so it is safe to cast an {@code Optional<T>} to {@code * Optional<S>} for any supertype {@code S} of {@code T}. * @author Kurt Alfred Kluever * @author Kevin Bourrillion * @since 10.0 */ public abstract class Optional<T> implements Serializable { /** * Returns an {@code Optional} instance with no contained reference. * * <p><b>Comparison to {@code java.util.Optional}:</b> this method is equivalent to Java 8's * {@code Optional.empty}. */ public static <T> Optional<T> absent() { return Absent.withType(); } /** * Returns an {@code Optional} instance containing the given non-null reference. To have {@code * null} treated as {@link #absent}, use {@link #fromNullable} instead. * * <p><b>Comparison to {@code java.util.Optional}:</b> no differences. * * @throws NullPointerException if {@code reference} is null */ public static <T> Optional<T> of(T reference) { return new Present<T>(checkNotNull(reference)); } /** * If {@code nullableReference} is non-null, returns an {@code Optional} instance containing * that * reference; otherwise returns {@link Optional#absent}. * * <p><b>Comparison to {@code java.util.Optional}:</b> this method is equivalent to Java 8's * {@code Optional.ofNullable}. */ public static <T> Optional<T> fromNullable(@Nullable T nullableReference) { return (nullableReference == null) ? Optional.<T>absent() : new Present<T>(nullableReference); } Optional() {} /** * Returns {@code true} if this holder contains a (non-null) instance. * * <p><b>Comparison to {@code java.util.Optional}:</b> no differences. */ public abstract boolean isPresent(); /** * Returns the contained instance, which must be present. If the instance might be absent, use * {@link #or(Object)} or {@link #orNull} instead. * * <p><b>Comparison to {@code java.util.Optional}:</b> when the value is absent, this method * throws {@link IllegalStateException}, whereas the Java 8 counterpart throws * {@link NoSuchElementException}. * * @throws IllegalStateException if the instance is absent ({@link #isPresent} returns * {@code false}); depending on this <i>specific</i> exception type (over the more general * {@link RuntimeException}) is discouraged */ public abstract T get(); /** * Returns the contained instance if it is present; {@code defaultValue} otherwise. If no * default * value should be required because the instance is known to be present, use {@link #get()} * instead. For a default value of {@code null}, use {@link #orNull}. * * <p>Note about generics: The signature {@code public T or(T defaultValue)} is overly * restrictive. However, the ideal signature, {@code public <S super T> S or(S)}, is not legal * Java. As a result, some sensible operations involving subtypes are compile errors: * <pre> {@code * * Optional<Integer> optionalInt = getSomeOptionalInt(); * Number value = optionalInt.or(0.5); // error * * FluentIterable<? extends Number> numbers = getSomeNumbers(); * Optional<? extends Number> first = numbers.first(); * Number value = first.or(0.5); // error}</pre> * * <p>As a workaround, it is always safe to cast an {@code Optional<? extends T>} to {@code * Optional<T>}. Casting either of the above example {@code Optional} instances to {@code * Optional<Number>} (where {@code Number} is the desired output type) solves the problem: * <pre> {@code * * Optional<Number> optionalInt = (Optional) getSomeOptionalInt(); * Number value = optionalInt.or(0.5); // fine * * FluentIterable<? extends Number> numbers = getSomeNumbers(); * Optional<Number> first = (Optional) numbers.first(); * Number value = first.or(0.5); // fine}</pre> * * <p><b>Comparison to {@code java.util.Optional}:</b> this method is similar to Java 8's * {@code Optional.orElse}, but will not accept {@code null} as a {@code defaultValue} * ({@link #orNull} must be used instead). As a result, the value returned by this method is * guaranteed non-null, which is not the case for the {@code java.util} equivalent. */ public abstract T or(T defaultValue); /** * Returns this {@code Optional} if it has a value present; {@code secondChoice} otherwise. * * <p><b>Comparison to {@code java.util.Optional}:</b> this method has no equivalent in Java * 8's * {@code Optional} class; write {@code thisOptional.isPresent() ? thisOptional : secondChoice} * instead. */ public abstract Optional<T> or(Optional<? extends T> secondChoice); /** * Returns the contained instance if it is present; {@code null} otherwise. If the instance is * known to be present, use {@link #get()} instead. * * <p><b>Comparison to {@code java.util.Optional}:</b> this method is equivalent to Java 8's * {@code Optional.orElse(null)}. */ @Nullable public abstract T orNull(); /** * Returns an immutable singleton {@link Set} whose only element is the contained instance if * it * is present; an empty immutable {@link Set} otherwise. * * <p><b>Comparison to {@code java.util.Optional}:</b> this method has no equivalent in Java * 8's * {@code Optional} class. However, this common usage: <pre> {@code * * for (Foo foo : possibleFoo.asSet()) { * doSomethingWith(foo); * }}</pre> * * ... can be replaced with: <pre> {@code * * possibleFoo.ifPresent(foo -> doSomethingWith(foo));}</pre> * * @since 11.0 */ public abstract Set<T> asSet(); /** * Returns {@code true} if {@code object} is an {@code Optional} instance, and either the * contained references are {@linkplain Object#equals equal} to each other or both are absent. * Note that {@code Optional} instances of differing parameterized types can be equal. * * <p><b>Comparison to {@code java.util.Optional}:</b> no differences. */ @Override public abstract boolean equals(@Nullable Object object); /** * Returns a hash code for this instance. * * <p><b>Comparison to {@code java.util.Optional}:</b> this class leaves the specific choice of * hash code unspecified, unlike the Java 8 equivalent. */ @Override public abstract int hashCode(); /** * Returns a string representation for this instance. * * <p><b>Comparison to {@code java.util.Optional}:</b> this class leaves the specific string * representation unspecified, unlike the Java 8 equivalent. */ @Override public abstract String toString(); private static final long serialVersionUID = 0; }