package edu.cs4730.opengl30pyramid;
/**
* Created by Seker on 2/23/2016.
* <p/>
* This code actually will draw a "pyramid".
*/
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import android.opengl.GLES30;
import android.util.Log;
public class Pyramid {
private int mProgramObject;
private int mMVPMatrixHandle;
private int mColorHandle;
private FloatBuffer mVertices;
//initial size of the pyramid. set here, so it is easier to change later.
float size = 0.4f;
//this is the initial data, which will need to translated into the mVertices variable in the consturctor.
float[] mVerticesData = new float[]{
////////////////////////////////////////////////////////////////////
// top
////////////////////////////////////////////////////////////////////
// FRONT
0.0f, size, 0.0f, // top
-size, -size, size, // front-left
size, -size, size, // front-right
// RIGHT
0.0f, size, 0.0f, // top
size, -size, size, // front-right
size, -size, -size, // back-right
// BACK
0.0f, size, 0.0f, // top
size, -size, -size, // back-right
-size, -size, -size, // back-left
// LEFT
0.0f, size, 0.0f, // top
-size, -size, -size, // back-left
-size, -size, size, // front-left
////////////////////////////////////////////////////////////////////
// BOTTOM
////////////////////////////////////////////////////////////////////
// Triangle 1
-size, -size, -size, // back-left
-size, -size, size, // front-left
size, -size, size, // front-right
// Triangle 2
size, -size, size, // front-right
size, -size, -size, // back-right
-size, -size, -size // back-left
};
float colorcyan[] = myColor.cyan();
float colorblue[] = myColor.blue();
float colorred[] = myColor.red();
float colorgray[] = myColor.gray();
float colorgreen[] = myColor.green();
float coloryellow[] = myColor.yellow();
//vertex shader code
String vShaderStr =
"#version 300 es \n"
+ "uniform mat4 uMVPMatrix; \n"
+ "in vec4 vPosition; \n"
+ "void main() \n"
+ "{ \n"
+ " gl_Position = uMVPMatrix * vPosition; \n"
+ "} \n";
//fragment shader code.
String fShaderStr =
"#version 300 es \n"
+ "precision mediump float; \n"
+ "uniform vec4 vColor; \n"
+ "out vec4 fragColor; \n"
+ "void main() \n"
+ "{ \n"
+ " fragColor = vColor; \n"
+ "} \n";
String TAG = "Pyramid";
//finally some methods
//constructor
public Pyramid() {
//first setup the mVertices correctly.
mVertices = ByteBuffer
.allocateDirect(mVerticesData.length * 4)
.order(ByteOrder.nativeOrder())
.asFloatBuffer()
.put(mVerticesData);
mVertices.position(0);
//setup the shaders
int vertexShader;
int fragmentShader;
int programObject;
int[] linked = new int[1];
// Load the vertex/fragment shaders
vertexShader = myRenderer.LoadShader(GLES30.GL_VERTEX_SHADER, vShaderStr);
fragmentShader = myRenderer.LoadShader(GLES30.GL_FRAGMENT_SHADER, fShaderStr);
// Create the program object
programObject = GLES30.glCreateProgram();
if (programObject == 0) {
Log.e(TAG, "So some kind of error, but what?");
return;
}
GLES30.glAttachShader(programObject, vertexShader);
GLES30.glAttachShader(programObject, fragmentShader);
// Bind vPosition to attribute 0
GLES30.glBindAttribLocation(programObject, 0, "vPosition");
// Link the program
GLES30.glLinkProgram(programObject);
// Check the link status
GLES30.glGetProgramiv(programObject, GLES30.GL_LINK_STATUS, linked, 0);
if (linked[0] == 0) {
Log.e(TAG, "Error linking program:");
Log.e(TAG, GLES30.glGetProgramInfoLog(programObject));
GLES30.glDeleteProgram(programObject);
return;
}
// Store the program object
mProgramObject = programObject;
//now everything is setup and ready to draw.
}
public void draw(float[] mvpMatrix) {
// Use the program object
GLES30.glUseProgram(mProgramObject);
// get handle to shape's transformation matrix
mMVPMatrixHandle = GLES30.glGetUniformLocation(mProgramObject, "uMVPMatrix");
myRenderer.checkGlError("glGetUniformLocation");
// get handle to fragment shader's vColor member
mColorHandle = GLES30.glGetUniformLocation(mProgramObject, "vColor");
// Apply the projection and view transformation
GLES30.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0);
myRenderer.checkGlError("glUniformMatrix4fv");
int VERTEX_POS_INDX = 0;
mVertices.position(VERTEX_POS_INDX); //just in case. We did it already though.
//add all the points to the space, so they can be correct by the transformations.
//would need to do this even if there were no transformations actually.
GLES30.glVertexAttribPointer(VERTEX_POS_INDX, 3, GLES30.GL_FLOAT,
false, 0, mVertices);
GLES30.glEnableVertexAttribArray(VERTEX_POS_INDX);
//Now we are ready to draw the cube finally.
int startPos = 0;
int verticesPerface = 3;
//draw front face
GLES30.glUniform4fv(mColorHandle, 1, colorblue, 0);
GLES30.glDrawArrays(GLES30.GL_TRIANGLES, startPos, verticesPerface);
startPos += verticesPerface;
//draw right face
GLES30.glUniform4fv(mColorHandle, 1, colorcyan, 0);
GLES30.glDrawArrays(GLES30.GL_TRIANGLES, startPos, verticesPerface);
startPos += verticesPerface;
//draw back face
GLES30.glUniform4fv(mColorHandle, 1, colorred, 0);
GLES30.glDrawArrays(GLES30.GL_TRIANGLES, startPos, verticesPerface);
startPos += verticesPerface;
//draw left face
GLES30.glUniform4fv(mColorHandle, 1, colorgray, 0);
GLES30.glDrawArrays(GLES30.GL_TRIANGLES, startPos, verticesPerface);
startPos += verticesPerface;
//draw bottom face 1 tri square, so 6 faces.
GLES30.glUniform4fv(mColorHandle, 1, coloryellow, 0);
GLES30.glDrawArrays(GLES30.GL_TRIANGLES, startPos, verticesPerface);
startPos += verticesPerface;
//draw bottom face 2 tri square, so 6 faces.
GLES30.glUniform4fv(mColorHandle, 1, coloryellow, 0);
GLES30.glDrawArrays(GLES30.GL_TRIANGLES, startPos, verticesPerface);
startPos += verticesPerface;
//last face, so no need to increment.
}
}