package netflix.ocelli.util; import java.util.AbstractQueue; import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; import java.util.List; import java.util.Random; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock; public class RandomBlockingQueue<E> extends AbstractQueue<E> { /** The queued items */ private List<E> items = new ArrayList<E>(); private Random rand = new Random(); /** Main lock guarding all access */ final ReentrantLock lock; /** Condition for waiting takes */ private final Condition notEmpty; public RandomBlockingQueue() { this(false); } public RandomBlockingQueue(boolean fair) { lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); } private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); } @SuppressWarnings("unchecked") static <E> E cast(Object item) { return (E) item; } /** * Inserts element into array * Call only when holding lock. */ private void insert(E x) { if (items.size() == 0) { items.add(x); } else { int index = rand.nextInt(items.size()); items.add(items.get(index)); items.set(index, x); } notEmpty.signal(); } /** * Extracts random element. Moves the last element to the spot where the random * element was removed. This avoids having to shift all the items in the array. * * Call only when holding lock. */ private E extract() { return items.remove(items.size()-1); } public boolean offer(E e) { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lock(); try { insert(e); return true; } finally { lock.unlock(); } } public void put(E e) throws InterruptedException { offer(e); } public boolean offer(E e, long timeout, TimeUnit unit) { offer(e); return true; } public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { return (items.size() == 0) ? null : extract(); } finally { lock.unlock(); } } public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (items.size() == 0) notEmpty.await(); return extract(); } finally { lock.unlock(); } } public E poll(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while (items.size() == 0) { if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } return extract(); } finally { lock.unlock(); } } public E peek() { final ReentrantLock lock = this.lock; lock.lock(); try { return (items.size() == 0) ? null : items.get(rand.nextInt(items.size())); } finally { lock.unlock(); } } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue */ public int size() { final ReentrantLock lock = this.lock; lock.lock(); try { return items.size(); } finally { lock.unlock(); } } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of additional elements that this queue can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current {@code size} of this queue. * * <p>Note that you <em>cannot</em> always tell if an attempt to insert * an element will succeed by inspecting {@code remainingCapacity} * because it may be the case that another thread is about to * insert or remove an element. */ public int remainingCapacity() { final ReentrantLock lock = this.lock; lock.lock(); try { return Integer.MAX_VALUE - items.size(); } finally { lock.unlock(); } } /** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element {@code e} such * that {@code o.equals(e)}, if this queue contains one or more such * elements. * Returns {@code true} if this queue contained the specified element * (or equivalently, if this queue changed as a result of the call). * * <p>Removal of interior elements in circular array based queues * is an intrinsically slow and disruptive operation, so should * be undertaken only in exceptional circumstances, ideally * only when the queue is known not to be accessible by other * threads. * * @param o element to be removed from this queue, if present * @return {@code true} if this queue changed as a result of the call */ public boolean remove(Object o) { if (o == null) return false; final ReentrantLock lock = this.lock; lock.lock(); try { return this.items.remove(o); } finally { lock.unlock(); } } /** * Returns {@code true} if this queue contains the specified element. * More formally, returns {@code true} if and only if this queue contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this queue * @return {@code true} if this queue contains the specified element */ public boolean contains(Object o) { if (o == null) return false; final ReentrantLock lock = this.lock; lock.lock(); try { return items.contains(o); } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence. * * <p>The returned array will be "safe" in that no references to it are * maintained by this queue. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this queue */ public Object[] toArray() { final ReentrantLock lock = this.lock; lock.lock(); try { return this.items.toArray(new Object[items.size()]); } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this queue, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the queue fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this queue. * * <p>If this queue fits in the specified array with room to spare * (i.e., the array has more elements than this queue), the element in * the array immediately following the end of the queue is set to * {@code null}. * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose {@code x} is a queue known to contain only strings. * The following code can be used to dump the queue into a newly * allocated array of {@code String}: * * <pre> * String[] y = x.toArray(new String[0]);</pre> * * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the queue are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this queue * @throws NullPointerException if the specified array is null */ public <T> T[] toArray(T[] a) { final ReentrantLock lock = this.lock; lock.lock(); try { return items.toArray(a); } finally { lock.unlock(); } } public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { return items.toString(); } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this queue. * The queue will be empty after this call returns. */ public void clear() { final ReentrantLock lock = this.lock; lock.lock(); try { this.items.clear(); } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c) { checkNotNull(c); if (c == this) throw new IllegalArgumentException(); final ReentrantLock lock = this.lock; lock.lock(); try { int n = this.items.size(); this.items.removeAll(c); return n; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection<? super E> c, int maxElements) { checkNotNull(c); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; final ReentrantLock lock = this.lock; lock.lock(); try { if (maxElements < this.items.size()) maxElements = this.items.size(); int n = this.items.size(); this.items.removeAll(c); return n; } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The elements will be returned in order from first (head) to last (tail). * * <p>The returned {@code Iterator} is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException * ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence */ public Iterator<E> iterator() { throw new UnsupportedOperationException(); } }