/* (C) 2012 Pragmatic Software This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/ */ /** * Implements an AA-tree. * @author Based upon implemention by Mark Allen Weiss */ // Utility class to pool Strings without expensive allocations package com.googlecode.networklog; public class CharArrayStringAATree { /** * Construct the tree. */ public CharArrayStringAATree( ) { nullNode = new AANode( null, null, null ); nullNode.left = nullNode.right = nullNode; nullNode.level = 0; root = nullNode; } public int size = 0; /** * Insert into the tree. * @param x the item to insert. * @return the item inserted or the value of the existing item */ public String insert( String x ) { root = insert( x, root ); return result; } /** * Insert into the tree. * @param x the item to insert. * @return the item inserted or the value of the existing item */ public String insert( CharArray x ) { root = insert( x, root ); return result; } /** * Remove from the tree. * @param x the item to remove. * @throws ItemNotFoundException if x is not found. */ public void remove( String x ) throws ItemNotFoundException { deletedNode = nullNode; root = remove( x, root ); } /** * Find an item in the tree. * @param x the item to search for. * @return the matching item or null if not found. */ public String find( String x ) { AANode current = root; nullNode.element = x; int compare; for( ; ; ) { compare = x.compareTo(current.element); if( compare < 0 ) current = current.left; else if( compare > 0 ) current = current.right; else if( current != nullNode ) return current.element; else return null; } } /** * Make the tree logically empty. */ public void clear( ) { root = nullNode; size = 0; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == nullNode; } /** * Internal method to insert into a subtree. * Sets {@link result} to the value of the existing or newly inserted object * @param x the item to insert. * @param t the node that roots the tree. * @return the new root. */ private AANode insert( CharArray x, AANode t ) { if( t == nullNode ) { size++; t = new AANode( x.toString(), nullNode, nullNode ); result = t.element; } else { int compare = x.compareTo(t.element); if(compare < 0) { t.left = insert( x, t.left ); } else if(compare > 0 ) { t.right = insert( x, t.right ); } else { result = t.element; return t; } } t = skew( t ); t = split( t ); return t; } /** * Internal method to insert into a subtree. * Sets {@link result} to the value of the existing or newly inserted object * @param x the item to insert. * @param t the node that roots the tree. * @return the new root. */ private AANode insert( String x, AANode t ) { if( t == nullNode ) { t = new AANode( x, nullNode, nullNode ); result = t.element; } else { int compare = x.compareTo(t.element); if(compare < 0) { t.left = insert( x, t.left ); } else if(compare > 0) { t.right = insert( x, t.right ); } else { result = t.element; return t; } } t = skew( t ); t = split( t ); return t; } /** * Internal method to remove from a subtree. * @param x the item to remove. * @param t the node that roots the tree. * @return the new root. * @throws ItemNotFoundException if x is not found. */ private AANode remove( String x, AANode t ) throws ItemNotFoundException { if( t != nullNode ) { // Step 1: Search down the tree and set lastNode and deletedNode lastNode = t; if( x.compareTo( t.element ) < 0 ) t.left = remove( x, t.left ); else { deletedNode = t; t.right = remove( x, t.right ); } // Step 2: If at the bottom of the tree and // x is present, we remove it if( t == lastNode ) { if( deletedNode == nullNode || x.compareTo( deletedNode.element ) != 0 ) { throw new ItemNotFoundException( x.toString( ) ); } else { deletedNode.element = t.element; t = t.right; } } // Step 3: Otherwise, we are not at the bottom; rebalance else if( t.left.level < t.level - 1 || t.right.level < t.level - 1 ) { if( t.right.level > --t.level ) t.right.level = t.level; t = skew( t ); t.right = skew( t.right ); t.right.right = skew( t.right.right ); t = split( t ); t.right = split( t.right ); } } return t; } /** * Skew primitive for AA-trees. * @param t the node that roots the tree. * @return the new root after the rotation. */ private static AANode skew( AANode t ) { if( t.left.level == t.level ) t = rotateWithLeftChild( t ); return t; } /** * Split primitive for AA-trees. * @param t the node that roots the tree. * @return the new root after the rotation. */ private static AANode split( AANode t ) { if( t.right.right.level == t.level ) { t = rotateWithRightChild( t ); t.level++; } return t; } /** * Rotate binary tree node with left child. */ private static AANode rotateWithLeftChild( AANode k2 ) { AANode k1 = k2.left; k2.left = k1.right; k1.right = k2; return k1; } /** * Rotate binary tree node with right child. */ private static AANode rotateWithRightChild( AANode k1 ) { AANode k2 = k1.right; k1.right = k2.left; k2.left = k1; return k2; } private static class AANode { // Constructors AANode( String theElement, AANode lt, AANode rt ) { element = theElement; left = lt; right = rt; level = 1; } String element; // The data in the node AANode left; // Left child AANode right; // Right child int level; // Level } private AANode root; private AANode nullNode; private AANode deletedNode; private AANode lastNode; private String result; }