/* * This file is part of "The Java Telnet Application". * * (c) Matthias L. Jugel, Marcus Mei�ner 1996-2002. All Rights Reserved. * The file was changed by Radek Polak to work as midlet in MIDP 1.0 * * Please visit http://javatelnet.org/ for updates and contact. * * --LICENSE NOTICE-- * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * --LICENSE NOTICE-- * * Information about the base of this code: * Xuejia Lai: On the Design and Security of Block Ciphers, ETH * Series in Information Processing, vol. 1, Hartung-Gorre * Verlag, Konstanz, Switzerland, 1992. Another source was Bruce * Schneier: Applied Cryptography, John Wiley & Sons, 1994. * * The IDEA mathematical formula may be covered by one or more of the * following patents: PCT/CH91/00117, EP 0 482 154 B1, US Pat. 5,214,703. */ package ssh.v1; /** * @author Marcus Meissner * @version $Id$ */ public final class IDEA extends Cipher { protected int[] key_schedule = new int[52]; protected int IV0 = 0; protected int IV1 = 0; public void encrypt( byte[] src, int srcOff, byte[] dest, int destOff, int len ) { int[] out = new int[2]; int iv0 = IV0; int iv1 = IV1; int end = srcOff + len; for ( int si = srcOff, di = destOff; si < end; si += 8, di += 8 ) { encrypt( iv0, iv1, out ); iv0 = out[0]; iv1 = out[1]; iv0 ^= ( ( src[si + 3] & 0xff ) | ( ( src[si + 2] & 0xff ) << 8 ) | ( ( src[si + 1] & 0xff ) << 16 ) | ( ( src[si] & 0xff ) << 24 ) ); iv1 ^= ( ( src[si + 7] & 0xff ) | ( ( src[si + 6] & 0xff ) << 8 ) | ( ( src[si + 5] & 0xff ) << 16 ) | ( ( src[si + 4] & 0xff ) << 24 ) ); if ( di + 8 <= end ) { dest[di + 3] = (byte) ( iv0 & 0xff ); dest[di + 2] = (byte) ( ( iv0 >>> 8 ) & 0xff ); dest[di + 1] = (byte) ( ( iv0 >>> 16 ) & 0xff ); dest[di] = (byte) ( ( iv0 >>> 24 ) & 0xff ); dest[di + 7] = (byte) ( iv1 & 0xff ); dest[di + 6] = (byte) ( ( iv1 >>> 8 ) & 0xff ); dest[di + 5] = (byte) ( ( iv1 >>> 16 ) & 0xff ); dest[di + 4] = (byte) ( ( iv1 >>> 24 ) & 0xff ); } else { switch ( end - di ) { case 7: dest[di + 6] = (byte) ( ( iv1 >>> 8 ) & 0xff ); case 6: dest[di + 5] = (byte) ( ( iv1 >>> 16 ) & 0xff ); case 5: dest[di + 4] = (byte) ( ( iv1 >>> 24 ) & 0xff ); case 4: dest[di + 3] = (byte) ( iv0 & 0xff ); case 3: dest[di + 2] = (byte) ( ( iv0 >>> 8 ) & 0xff ); case 2: dest[di + 1] = (byte) ( ( iv0 >>> 16 ) & 0xff ); case 1: dest[di] = (byte) ( ( iv0 >>> 24 ) & 0xff ); } } } IV0 = iv0; IV1 = iv1; } public void decrypt( byte[] src, int srcOff, byte[] dest, int destOff, int len ) { int[] out = new int[2]; int iv0 = IV0; int iv1 = IV1; int plain0, plain1; int end = srcOff + len; for ( int si = srcOff, di = destOff; si < end; si += 8, di += 8 ) { decrypt( iv0, iv1, out ); iv0 = ( ( src[si + 3] & 0xff ) | ( ( src[si + 2] & 0xff ) << 8 ) | ( ( src[si + 1] & 0xff ) << 16 ) | ( ( src[si] & 0xff ) << 24 ) ); iv1 = ( ( src[si + 7] & 0xff ) | ( ( src[si + 6] & 0xff ) << 8 ) | ( ( src[si + 5] & 0xff ) << 16 ) | ( ( src[si + 4] & 0xff ) << 24 ) ); plain0 = out[0] ^ iv0; plain1 = out[1] ^ iv1; if ( di + 8 <= end ) { dest[di + 3] = (byte) ( plain0 & 0xff ); dest[di + 2] = (byte) ( ( plain0 >>> 8 ) & 0xff ); dest[di + 1] = (byte) ( ( plain0 >>> 16 ) & 0xff ); dest[di] = (byte) ( ( plain0 >>> 24 ) & 0xff ); dest[di + 7] = (byte) ( plain1 & 0xff ); dest[di + 6] = (byte) ( ( plain1 >>> 8 ) & 0xff ); dest[di + 5] = (byte) ( ( plain1 >>> 16 ) & 0xff ); dest[di + 4] = (byte) ( ( plain1 >>> 24 ) & 0xff ); } else { switch ( end - di ) { case 7: dest[di + 6] = (byte) ( ( plain1 >>> 8 ) & 0xff ); case 6: dest[di + 5] = (byte) ( ( plain1 >>> 16 ) & 0xff ); case 5: dest[di + 4] = (byte) ( ( plain1 >>> 24 ) & 0xff ); case 4: dest[di + 3] = (byte) ( plain0 & 0xff ); case 3: dest[di + 2] = (byte) ( ( plain0 >>> 8 ) & 0xff ); case 2: dest[di + 1] = (byte) ( ( plain0 >>> 16 ) & 0xff ); case 1: dest[di] = (byte) ( ( plain0 >>> 24 ) & 0xff ); } } } IV0 = iv0; IV1 = iv1; } public void setKey( byte[] key ) { int i, ki = 0, j = 0; for ( i = 0; i < 8; i++ ) key_schedule[i] = ( ( key[2 * i] & 0xff ) << 8 ) | ( key[( 2 * i ) + 1] & 0xff ); for ( i = 8, j = 0; i < 52; i++ ) { j++; key_schedule[ki + j + 7] = ( ( key_schedule[ki + ( j & 7 )] << 9 ) | ( key_schedule[ki + ( ( j + 1 ) & 7 )] >>> 7 ) ) & 0xffff; ki += j & 8; j &= 7; } } public final void encrypt( int l, int r, int[] out ) { int t1 = 0, t2 = 0, x1, x2, x3, x4, ki = 0; x1 = ( l >>> 16 ); x2 = ( l & 0xffff ); x3 = ( r >>> 16 ); x4 = ( r & 0xffff ); for ( int round = 0; round < 8; round++ ) { x1 = mulop( x1 & 0xffff, key_schedule[ki++] ); x2 = ( x2 + key_schedule[ki++] ); x3 = ( x3 + key_schedule[ki++] ); x4 = mulop( x4 & 0xffff, key_schedule[ki++] ); t1 = ( x1 ^ x3 ); t2 = ( x2 ^ x4 ); t1 = mulop( t1 & 0xffff, key_schedule[ki++] ); t2 = ( t1 + t2 ); t2 = mulop( t2 & 0xffff, key_schedule[ki++] ); t1 = ( t1 + t2 ); x1 = ( x1 ^ t2 ); x4 = ( x4 ^ t1 ); t1 = ( t1 ^ x2 ); x2 = ( t2 ^ x3 ); x3 = t1; } t2 = x2; x1 = mulop( x1 & 0xffff, key_schedule[ki++] ); x2 = ( t1 + key_schedule[ki++] ); x3 = ( ( t2 + key_schedule[ki++] ) & 0xffff ); x4 = mulop( x4 & 0xffff, key_schedule[ki] ); out[0] = ( x1 << 16 ) | ( x2 & 0xffff ); out[1] = ( x3 << 16 ) | ( x4 & 0xffff ); } public final void decrypt( int l, int r, int[] out ) { encrypt( l, r, out ); } public static final int mulop( int a, int b ) { int ab = a * b; if ( ab != 0 ) { int lo = ab & 0xffff; int hi = ( ab >>> 16 ) & 0xffff; return ( ( lo - hi ) + ( ( lo < hi ) ? 1 : 0 ) ); } if ( a == 0 ) return ( 1 - b ); return ( 1 - a ); } /* * !!! REMOVE DEBUG !!! * * public static void main(String[] argv) { byte[] key = { (byte) 0xd3, * (byte) 0x96, (byte) 0xcf, (byte) 0x07, (byte) 0xfa, (byte) 0xa2, (byte) * 0x64, (byte) 0xfe, (byte) 0xf3, (byte) 0xa2, (byte) 0x06, (byte) 0x07, * (byte) 0x1a, (byte) 0xb6, (byte) 0x13, (byte) 0xf6 }; * * byte[] txt = { (byte) 0x2e, (byte) 0xbe, (byte) 0xc5, (byte) 0xac, (byte) * 0x02, (byte) 0xa1, (byte) 0xd5, (byte) 0x7f, (byte) 0x01, (byte) 0x00, * (byte) 0x00, (byte) 0x00, (byte) 0x1f, (byte) 0x43, (byte) 0x6f, (byte) * 0x72, (byte) 0x72, (byte) 0x75, (byte) 0x70, (byte) 0x74, (byte) 0x65, * (byte) 0x64, (byte) 0x20, (byte) 0x63, (byte) 0x68, (byte) 0x65, (byte) * 0x63, (byte) 0x6b, (byte) 0x20, (byte) 0x62, (byte) 0x79, (byte) 0x74, * (byte) 0x65, (byte) 0x73, (byte) 0x20, (byte) 0x6f, (byte) 0x6e, (byte) * 0x20, (byte) 0x69, (byte) 0x6e, (byte) 0x70, (byte) 0x75, (byte) 0x74, * (byte) 0x2e, (byte) 0x91, (byte) 0x9a, (byte) 0x57, (byte) 0xdd }; * * byte[] enc; byte[] dec; * * System.out.println("key: " + printHex(key)); System.out.println("txt: " + * printHex(txt)); * * IDEA cipher = new IDEA(); cipher.setKey(key); * * for (int i = 0; i < 52; i++) { if ((i & 0x7) == 0) * System.out.println(""); System.out.print(" " + cipher.key_schedule[i]); } * * enc = cipher.encrypt(txt); System.out.println("enc: " + printHex(enc)); * * cipher = new IDEA(); cipher.setKey(key); dec = cipher.decrypt(enc); * * System.out.println("dec: " + printHex(dec)); } * * static String printHex(byte[] buf) { byte[] out = new byte[buf.length + * 1]; out[0] = 0; System.arraycopy(buf, 0, out, 1, buf.length); BigInteger * big = new BigInteger(out); return big.toString(16); } */ }