/** * Copyright (C) 2015-2016, BMW Car IT GmbH and BMW AG * Author: Stefan Holder (stefan.holder@bmw.de) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.graphhopper.matching.util; import static java.lang.Math.PI; import static java.lang.Math.exp; import static java.lang.Math.log; import static java.lang.Math.pow; import static java.lang.Math.sqrt; /** * Implements various probability distributions. */ public class Distributions { static double normalDistribution(double sigma, double x) { return 1.0 / (sqrt(2.0 * PI) * sigma) * exp(-0.5 * pow(x / sigma, 2)); } /** * Use this function instead of Math.log(normalDistribution(sigma, x)) to avoid an * arithmetic underflow for very small probabilities. */ public static double logNormalDistribution(double sigma, double x) { return Math.log(1.0 / (sqrt(2.0 * PI) * sigma)) + (-0.5 * pow(x / sigma, 2)); } /** * @param beta =1/lambda with lambda being the standard exponential distribution rate parameter */ static double exponentialDistribution(double beta, double x) { return 1.0 / beta * exp(-x / beta); } /** * Use this function instead of Math.log(exponentialDistribution(beta, x)) to avoid an * arithmetic underflow for very small probabilities. * * @param beta =1/lambda with lambda being the standard exponential distribution rate parameter */ static double logExponentialDistribution(double beta, double x) { return log(1.0 / beta) - (x / beta); } }