/**
* Copyright (C) 2013-2014 Olaf Lessenich
* Copyright (C) 2014-2015 University of Passau, Germany
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*
* Contributors:
* Olaf Lessenich <lessenic@fim.uni-passau.de>
* Georg Seibt <seibt@fim.uni-passau.de>
*/
package de.fosd.jdime.matcher.unordered.assignmentProblem;
import java.lang.reflect.Array;
import de.fosd.jdime.artifact.Artifact;
import de.fosd.jdime.config.merge.MergeContext;
import de.fosd.jdime.matcher.MatcherInterface;
import de.fosd.jdime.matcher.matching.Matching;
import de.fosd.jdime.matcher.matching.Matchings;
import de.fosd.jdime.matcher.unordered.UnorderedMatcher;
import de.fosd.jdime.util.Tuple;
/**
* <code>UnorderedMatcher</code> that solves the assignment problem, which
* consists of finding a maximum weight matching in a weighted bipartite graph.
*
* @param <T>
* type of artifact
* @author Olaf Lessenich
*/
public abstract class AssignmentProblemMatcher<T extends Artifact<T>> extends UnorderedMatcher<T> {
private static final String ID = AssignmentProblemMatcher.class.getSimpleName();
/**
* Constructs a new <code>AssignmentProblemMatcher</code> using the given <code>matcher</code> for recursive calls.
*
* @param matcher
* the parent <code>MatcherInterface</code>
*/
public AssignmentProblemMatcher(MatcherInterface<T> matcher) {
super(matcher);
}
/**
* {@inheritDoc}
* <p>
* TODO: this really needs documentation. I'll soon take care of that.
*/
@Override
public final Matchings<T> match(final MergeContext context, final T left, final T right) {
int rootMatching = left.matches(right) ? 1 : 0;
// number of first-level subtrees of t1
int m = left.getNumChildren();
// number of first-level subtrees of t2
int n = right.getNumChildren();
if (m == 0 || n == 0) {
Matchings<T> matchings = Matchings.of(left, right, rootMatching);
matchings.get(left, right).get().setAlgorithm(ID);
return matchings;
}
@SuppressWarnings("unchecked")
Tuple<Integer, Matchings<T>>[][] matchings = (Tuple<Integer, Matchings<T>>[][]) Array.newInstance(Tuple.class, m, n);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
matchings[i][j] = Tuple.of(0, new Matchings<>());
}
}
T childT1;
T childT2;
for (int i = 0; i < m; i++) {
childT1 = left.getChild(i);
for (int j = 0; j < n; j++) {
childT2 = right.getChild(j);
Matchings<T> w = matcher.match(context, childT1, childT2);
Matching<T> matching = w.get(childT1, childT2).get();
matchings[i][j] = Tuple.of(matching.getScore(), w);
}
}
return solveAssignmentProblem(left, right, matchings, rootMatching);
}
/**
* Solves the assignment problem, which consists of finding a maximum
* weight matching in a weighted bipartite graph.
*
* @param left
* left artifact
* @param right
* right artifact
* @param childrenMatching
* matrix of matchings
* @return matching of root nodes
*/
protected abstract Matchings<T> solveAssignmentProblem(T left, T right, Tuple<Integer, Matchings<T>>[][] childrenMatching, int rootMatching);
}