/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.flink.graph.generator.random; import org.apache.commons.math3.random.RandomGenerator; import java.util.ArrayList; import java.util.List; /** * This base class handles the task of dividing the requested work into the * appropriate number of blocks of near-equal size. * * @param <T> the type of the {@code RandomGenerator} */ public abstract class AbstractGeneratorFactory<T extends RandomGenerator> implements RandomGenerableFactory<T> { // A large computation will run in parallel but blocks are generated on // and distributed from a single node. This limit should be greater // than the maximum expected parallelism. public static final int MAXIMUM_BLOCK_COUNT = 1 << 15; // This should be sufficiently large relative to the cost of instantiating // and initializing the random generator and sufficiently small relative to // the cost of generating random values. protected abstract int getMinimumCyclesPerBlock(); protected abstract RandomGenerable<T> next(); @Override public List<BlockInfo<T>> getRandomGenerables(long elementCount, int cyclesPerElement) { long cycles = elementCount * cyclesPerElement; int blockCount = Math.min((int) Math.ceil(cycles / (float) getMinimumCyclesPerBlock()), MAXIMUM_BLOCK_COUNT); long elementsPerBlock = elementCount / blockCount; long elementRemainder = elementCount % blockCount; List<BlockInfo<T>> blocks = new ArrayList<>(blockCount); long blockStart = 0; for (int blockIndex = 0 ; blockIndex < blockCount ; blockIndex++) { if (blockIndex == blockCount - elementRemainder) { elementsPerBlock++; } RandomGenerable<T> randomGenerable = next(); blocks.add(new BlockInfo<>(randomGenerable, blockIndex, blockCount, blockStart, elementsPerBlock)); blockStart += elementsPerBlock; } return blocks; } }