package org.archive.bacon; import java.io.*; import java.net.*; import java.util.Hashtable; import org.apache.pig.EvalFunc; import org.apache.pig.data.Tuple; import org.apache.pig.impl.util.WrappedIOException; public class FPGenerator extends EvalFunc<Long> { public FPGenerator( ) throws IOException { } public Long exec( Tuple input ) throws IOException { if ( input == null || input.size() == 0 ) return null; try { String s = (String) input.get(0); Long f = FPGeneratorImpl.std64.fp( s ); return f; } catch ( Exception e ) { throw WrappedIOException.wrap("Caught exception processing input row ", e); } } } /** <p> This class provides methods that construct fingerprints of strings of bytes via operations in <i>GF[2^d]</i> for <i>0 < d <= 64</i>. <i>GF[2^d]</i> is represented as the set of polynomials of degree <i>d</i> with coefficients in <i>Z(2)</i>, modulo an irreducible polynomial <i>P</i> of degree <i>d</i>. The representation of polynomials is as an unsigned binary number in which the least significant exponent is kept in the most significant bit. <p> Let S be a string of bytes and <i>g(S)</i> the string obtained by taking the byte <code>0x01</code> followed by eight <code>0x00</code> bytes followed by <code>S</code>. Let <i>f(S)</i> be the polynomial associated to the string <i>S</i> viewed as a polynomial with coefficients in the field <i>Z(2)</i>. The fingerprint of S is simply the value <i>f(g(S))</i> modulo <i>P</i>. Because polynomials are represented with the least significant coefficient in the most significant bit, fingerprints of degree <i>d</i> are stored in the <code>d</code> <strong>most</strong> significant bits of a long word. <p> Fingerprints can be used as a probably unique id for the input string. More precisely, if <i>P</i> is chosen at random among irreducible polynomials of degree <i>d</i>, then the probability that any two strings <i>A</i> and <i>B</i> have the same fingerprint is less than <i>max(|A|,|B|)/2^(d+1)</i> where <i>|A|</i> is the length of A in bits. <p> The routines named <code>extend[8]</code> and <code>fp[8]</code> return reduced results, while <code>extend_[byte/char/int/long]</code> do not. An <em>un</em>reduced result is a number that is equal (mod </code>polynomial</code> to the desired fingerprint but may have degree <code>degree</code> or higher. The method <code>reduce</code> reduces such a result to a polynomial of degree less than <code>degree</code>. Obtaining reduced results takes longer than obtaining unreduced results; thus, when fingerprinting long strings, it's better to obtain irreduced results inside the fingerprinting loop and use <code>reduce</code> to reduce to a fingerprint after the loop. */ // Tested by: TestFPGenerator @SuppressWarnings("unchecked") class FPGeneratorImpl { /** Return a fingerprint generator. The fingerprints generated will have degree <code>degree</code> and will be generated by <code>polynomial</code>. If a generator based on <code>polynomial</code> has already been created, it will be returned. Requires that <code>polynomial</code> is an irreducible polynomial of degree <code>degree</code> (the array <code>polynomials</code> contains some irreducible polynomials). */ public static FPGeneratorImpl make(long polynomial, int degree) { Long l = new Long(polynomial); FPGeneratorImpl fpgen = (FPGeneratorImpl) generators.get(l); if (fpgen == null) { fpgen = new FPGeneratorImpl(polynomial, degree); generators.put(l, fpgen); } return fpgen; } private static final Hashtable generators = new Hashtable(10); private static final long zero = 0; private static final long one = 0x8000000000000000L; /** Return a value equal (mod <code>polynomial</code>) to <code>fp</code> and of degree less than <code>degree</code>. */ public long reduce(long fp) { int N = (8 - degree/8); long local = (N == 8 ? 0 : fp & (-1L << 8*N)); long temp = zero; for (int i = 0; i < N; i++) { temp ^= ByteModTable[8+i][((int)fp) & 0xff]; fp >>>= 8; }; return local ^ temp; } /** Extends <code>f</code> with lower eight bits of <code>v</code> with<em>out</em> full reduction. In other words, returns a polynomial that is equal (mod <code>polynomial</code>) to the desired fingerprint but may be of higher degree than the desired fingerprint. */ public long extend_byte(long f, int v) { f ^= (0xff & v); int i = (int)f; long result = (f>>>8); result ^= ByteModTable[7][i & 0xff]; return result; } /** Extends <code>f</code> with lower sixteen bits of <code>v</code>. Does not reduce. */ public long extend_char(long f, int v) { f ^= (0xffff & v); int i = (int)f; long result = (f>>>16); result ^= ByteModTable[6][i & 0xff]; i >>>= 8; result ^= ByteModTable[7][i & 0xff]; return result; } /** Extends <code>f</code> with (all bits of) <code>v</code>. Does not reduce. */ public long extend_int(long f, int v) { f ^= (0xffffffffL & v); int i = (int)f; long result = (f>>>32); result ^= ByteModTable[4][i & 0xff]; i >>>= 8; result ^= ByteModTable[5][i & 0xff]; i >>>= 8; result ^= ByteModTable[6][i & 0xff]; i >>>= 8; result ^= ByteModTable[7][i & 0xff]; return result; } /** Extends <code>f</code> with <code>v</code>. Does not reduce. */ public long extend_long(long f, long v) { f ^= v; long result = ByteModTable[0][(int)(f & 0xff)]; f >>>= 8; result ^= ByteModTable[1][(int)(f & 0xff)]; f >>>= 8; result ^= ByteModTable[2][(int)(f & 0xff)]; f >>>= 8; result ^= ByteModTable[3][(int)(f & 0xff)]; f >>>= 8; result ^= ByteModTable[4][(int)(f & 0xff)]; f >>>= 8; result ^= ByteModTable[5][(int)(f & 0xff)]; f >>>= 8; result ^= ByteModTable[6][(int)(f & 0xff)]; f >>>= 8; result ^= ByteModTable[7][(int)(f & 0xff)]; return result; } /** Compute fingerprint of "n" bytes of "buf" starting from "buf[start]". Requires "[start, start+n)" is in bounds. */ public long fp(byte[] buf, int start, int n) { return extend(empty, buf, start, n); } /** Compute fingerprint of (all bits of) "n" characters of "buf" starting from "buf[i]". Requires "[i, i+n)" is in bounds. */ public long fp(char[] buf, int start, int n) { return extend(empty, buf, start, n); } // COMMENTED OUT TO REMOVE Dependency on st.ata.util.Text // /** Compute fingerprint of (all bits of) <code>t</code> */ // public long fp(Text t) { // return extend(empty, t); // } /** Compute fingerprint of (all bits of) the characters of "s". */ public long fp(CharSequence s) { return extend(empty, s); } /** Compute fingerprint of (all bits of) "n" characters of "buf" starting from "buf[i]". Requires "[i, i+n)" is in bounds. */ public long fp(int[] buf, int start, int n) { return extend(empty, buf, start, n); } /** Compute fingerprint of (all bits of) "n" characters of "buf" starting from "buf[i]". Requires "[i, i+n)" is in bounds. */ public long fp(long[] buf, int start, int n) { return extend(empty, buf, start, n); } /** Compute fingerprint of the lower eight bits of the characters of "s". */ public long fp8(String s) { return extend8(empty, s); } /** Compute fingerprint of the lower eight bits of "n" characters of "buf" starting from "buf[i]". Requires "[i, i+n)" is in bounds. */ public long fp8(char[] buf, int start, int n) { return extend8(empty, buf, start, n); } /** Extends fingerprint <code>f</code> by adding the low eight bits of "b". */ public long extend(long f, byte v) { return reduce(extend_byte(f, v)); } /** Extends fingerprint <code>f</code> by adding (all bits of) "v". */ public long extend(long f, char v) { return reduce(extend_char(f, v)); } /** Extends fingerprint <code>f</code> by adding (all bits of) "v". */ public long extend(long f, int v) { return reduce(extend_int(f, v)); } /** Extends fingerprint <code>f</code> by adding (all bits of) "v". */ public long extend(long f, long v) { return reduce(extend_long(f, v)); } /** Extends fingerprint <code>f</code> by adding "n" bytes of "buf" starting from "buf[start]". Result is reduced. Requires "[i, i+n)" is in bounds. */ public long extend(long f, byte[] buf, int start, int n) { for (int i = 0; i < n; i++) { f = extend_byte(f, buf[start+i]); } return reduce(f); } /** Extends fingerprint <code>f</code> by adding (all bits of) "n" characters of "buf" starting from "buf[i]". Result is reduced. Requires "[i, i+n)" is in bounds. */ public long extend(long f, char[] buf, int start, int n) { for (int i = 0; i < n; i++) { f = extend_char(f, buf[start+i]); } return reduce(f); } /** Extends fingerprint <code>f</code> by adding (all bits of) the characters of "s". Result is reduced. */ public long extend(long f, CharSequence s) { int n = s.length(); for (int i = 0; i < n; i++) { int v = (int) s.charAt(i); f = extend_char(f, v); } return reduce(f); } // COMMENTED OUT TO REMOVE Dependency on st.ata.util.Text // /** Extends fingerprint <code>f</code> by adding (all bits of) // * <code>t</code> */ // public long extend(long f, Text t) { // return extend(f, t.buf, t.start, t.length()); // } /** Extends fingerprint <code>f</code> by adding (all bits of) "n" characters of "buf" starting from "buf[i]". Result is reduced. Requires "[i, i+n)" is in bounds. */ public long extend(long f, int[] buf, int start, int n) { for (int i = 0; i < n; i++) { f = extend_int(f, buf[start+i]); } return reduce(f); } /** Extends fingerprint <code>f</code> by adding (all bits of) "n" characters of "buf" starting from "buf[i]". Result is reduced. Requires "[i, i+n)" is in bounds. */ public long extend(long f, long[] buf, int start, int n) { for (int i = 0; i < n; i++) { f = extend_long(f, buf[start+i]); } return reduce(f); } /** Extends fingerprint <code>f</code> by adding the lower eight bits of the characters of "s". Result is reduced. */ public long extend8(long f, String s) { int n = s.length(); for (int i = 0; i < n; i++) { int x = (int) s.charAt(i); f = extend_byte(f, x); } return reduce(f); } /** Extends fingerprint <code>f</code> by adding the lower eight bits of "n" characters of "buf" starting from "buf[i]". Result is reduced. Requires "[i, i+n)" is in bounds. */ public long extend8(long f, char[] buf, int start, int n) { for (int i = 0; i < n; i++) { f = extend_byte(f, buf[start+i]); } return reduce(f); } /** Fingerprint of the empty string of bytes. */ public final long empty; /** The number of bits in fingerprints generated by <code>this</code>. */ public final int degree; /** The polynomial used by <code>this</code> to generate fingerprints. */ public long polynomial; /** Result of reducing certain polynomials. Specifically, if <code>f(S)</code> is bit string <code>S</code> interpreted as a polynomial, <code>f(ByteModTable[i][j])</code> equals <code>mod(x^(127 - 8*i) * f(j), P)</code>. */ private long[][] ByteModTable; /** Create a fingerprint generator. The fingerprints generated will have degree <code>degree</code> and will be generated by <code>polynomial</code>. Requires that <code>polynomial</code> is an irreducible polynomial of degree <code>degree</code> (the array <code>polynomials</code> contains some irreducible polynomials). */ private FPGeneratorImpl(long polynomial, int degree) { this.degree = degree; this.polynomial = polynomial; ByteModTable = new long[16][256]; long[] PowerTable = new long[128]; long x_to_the_i = one; long x_to_the_degree_minus_one = (one >>> (degree-1)); for (int i = 0; i < 128; i++) { // Invariants: // x_to_the_i = mod(x^i, polynomial) // forall 0 <= j < i, PowerTable[i] = mod(x^i, polynomial) PowerTable[i] = x_to_the_i; boolean overflow = ((x_to_the_i & x_to_the_degree_minus_one) != 0); x_to_the_i >>>= 1; if (overflow) { x_to_the_i ^= polynomial; } } this.empty = PowerTable[64]; for (int i = 0; i < 16; i++) { // Invariant: forall 0 <= i' < i, forall 0 <= j' < 256, // ByteModTable[i'][j'] = mod(x^(127 - 8*i') * f(j'), polynomial) for (int j = 0; j < 256; j++) { // Invariant: forall 0 <= i' < i, forall 0 <= j' < j, // ByteModTable[i'][j'] = mod(x^(degree+i')*f(j'),polynomial) long v = zero; for (int k = 0; k < 8; k++) { // Invariant: // v = mod(x^(degree+i) * f(j & ((1<<k)-1)), polynomial) if ((j & (1 << k)) != 0) { v ^= PowerTable[127 - i*8 - k]; } } ByteModTable[i][j] = v; } } } /** Array of irreducible polynomials. For each degree <code>d</code> between 1 and 64 (inclusive), <code>polynomials[d][i]</code> is an irreducible polynomial of degree <code>d</code>. There are at least two irreducible polynomials for each degree. */ public static final long polynomials[][] = { null, {0xC000000000000000L, 0xC000000000000000L}, {0xE000000000000000L, 0xE000000000000000L}, {0xD000000000000000L, 0xB000000000000000L}, {0xF800000000000000L, 0xF800000000000000L}, {0xEC00000000000000L, 0xBC00000000000000L}, {0xDA00000000000000L, 0xB600000000000000L}, {0xE500000000000000L, 0xE500000000000000L}, {0x9680000000000000L, 0xD480000000000000L}, {0x80C0000000000000L, 0x8840000000000000L}, {0xB0A0000000000000L, 0xE9A0000000000000L}, {0xD9F0000000000000L, 0xC9B0000000000000L}, {0xE758000000000000L, 0xDE98000000000000L}, {0xE42C000000000000L, 0x94E4000000000000L}, {0xD4CE000000000000L, 0xB892000000000000L}, {0xE2AB000000000000L, 0x9E39000000000000L}, {0xCCE4800000000000L, 0x9783800000000000L}, {0xD8F8C00000000000L, 0xA9CDC00000000000L}, {0x9A28200000000000L, 0xFD79E00000000000L}, {0xC782500000000000L, 0x96CD300000000000L}, {0xBEE6880000000000L, 0xE902C80000000000L}, {0x86D7E40000000000L, 0xF066340000000000L}, {0x9888060000000000L, 0x910ABE0000000000L}, {0xFF30E30000000000L, 0xB27EFB0000000000L}, {0x8E375B8000000000L, 0xA03D948000000000L}, {0xD1415C4000000000L, 0xF5357CC000000000L}, {0x91A916E000000000L, 0xB6CE66E000000000L}, {0xE6D2FC5000000000L, 0xD55882B000000000L}, {0x9A3BA0B800000000L, 0xFBD654E800000000L}, {0xAEA5D2E400000000L, 0xF0E533AC00000000L}, {0xDA88B7BE00000000L, 0xAA3AAEDE00000000L}, {0xBA75BB4300000000L, 0xF5A811C500000000L}, {0x9B6C9A2F80000000L, 0x9603CCED80000000L}, {0xFABB538840000000L, 0xE2747090C0000000L}, {0x8358898EA0000000L, 0x8C698D3D20000000L}, {0xDA8ABD5BF0000000L, 0xF6DF3A0AF0000000L}, {0xB090C3F758000000L, 0xD3B4D3D298000000L}, {0xAD9882F5BC000000L, 0x88DA4FB544000000L}, {0xC3C366272A000000L, 0xDCCF2A2262000000L}, {0x9BC0224A97000000L, 0xAF5D96F273000000L}, {0x8643FFF621800000L, 0x8E390C6EDC800000L}, {0xE45C01919BC00000L, 0xCBB34C8945C00000L}, {0x80D8141BC2E00000L, 0x886AFC3912200000L}, {0xF605807C26500000L, 0xA3B92D28F6300000L}, {0xCE9A2CFC76280000L, 0x98400C1921280000L}, {0xF61894904C040000L, 0xC8BE6DBCEC8C0000L}, {0xE3A44C104D160000L, 0xCA84A59443760000L}, {0xC7E84953A11B0000L, 0xD9D4F6AA02CB0000L}, {0xC26CDD1C9A358000L, 0x8BE8478434328000L}, {0xAE125DBEB198C000L, 0xFCC5DBFD5AAAC000L}, {0x86DE52A079A6A000L, 0xC5F16BD883816000L}, {0xDF82486AAFE37000L, 0xA293EC735692D000L}, {0xE91ABA275C272800L, 0xD686192874E3C800L}, {0x963D0960DAB3FC00L, 0xBA9DE62072621400L}, {0xA2188C4E8A46CE00L, 0xD31F75BCB4977E00L}, {0xC43A416020A6CB00L, 0x99F57FECA12B3900L}, {0xA4F72EF82A58AE80L, 0xCECE4391B81DA380L}, {0xB39F119264BC0940L, 0x80A277D20DABB9C0L}, {0xFD6616C0CBFA0B20L, 0xED16E64117DC11A0L}, {0xFFA8BC44327B5390L, 0xEDFB13DB3B66C210L}, {0xCAE8EB99E73AB548L, 0xC86135B6EA2F0B98L}, {0xBA49BADCDD19B16CL, 0x8F1944AFB18564C4L}, {0xECFC86D765EABBEEL, 0x9190E1C46CC13702L}, {0xE1F8D6B3195D6D97L, 0xDF70267FF5E4C979L}, {0xD74307D3FD3382DBL, 0x9999B3FFDC769B48L} }; /** The standard 64-bit fingerprint generator using <code>polynomials[0][64]</code>. */ public static final FPGeneratorImpl std64 = make(polynomials[64][0], 64); /** A standard 32-bit fingerprint generator using <code>polynomials[0][32]</code>. */ public static final FPGeneratorImpl std32 = make(polynomials[32][0], 32); // Below added by St.Ack on 09/30/2004. /** A standard 40-bit fingerprint generator using <code>polynomials[0][40]</code>. */ public static final FPGeneratorImpl std40 = make(polynomials[40][0], 40); /** A standard 24-bit fingerprint generator using <code>polynomials[0][24]</code>. */ public static final FPGeneratorImpl std24 = make(polynomials[24][0], 24); }