package org.archive.bacon;
import java.io.*;
import java.net.*;
import java.util.Hashtable;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.util.WrappedIOException;
public class FPGenerator extends EvalFunc<Long>
{
public FPGenerator( )
throws IOException
{
}
public Long exec( Tuple input )
throws IOException
{
if ( input == null || input.size() == 0 ) return null;
try
{
String s = (String) input.get(0);
Long f = FPGeneratorImpl.std64.fp( s );
return f;
}
catch ( Exception e )
{
throw WrappedIOException.wrap("Caught exception processing input row ", e);
}
}
}
/**
<p> This class provides methods that construct fingerprints of strings
of bytes via operations in <i>GF[2^d]</i> for <i>0 < d <= 64</i>.
<i>GF[2^d]</i> is represented as the set of polynomials of degree
<i>d</i> with coefficients in <i>Z(2)</i>, modulo an irreducible
polynomial <i>P</i> of degree <i>d</i>. The representation of
polynomials is as an unsigned binary number in which the least
significant exponent is kept in the most significant bit.
<p> Let S be a string of bytes and <i>g(S)</i> the string obtained by
taking the byte <code>0x01</code> followed by eight <code>0x00</code>
bytes followed by <code>S</code>. Let <i>f(S)</i> be the polynomial
associated to the string <i>S</i> viewed as a polynomial with
coefficients in the field <i>Z(2)</i>. The fingerprint of S is simply
the value <i>f(g(S))</i> modulo <i>P</i>. Because polynomials are
represented with the least significant coefficient in the most
significant bit, fingerprints of degree <i>d</i> are stored in the
<code>d</code> <strong>most</strong> significant bits of a long word.
<p> Fingerprints can be used as a probably unique id for the input
string. More precisely, if <i>P</i> is chosen at random among
irreducible polynomials of degree <i>d</i>, then the probability that
any two strings <i>A</i> and <i>B</i> have the same fingerprint is
less than <i>max(|A|,|B|)/2^(d+1)</i> where <i>|A|</i> is the length
of A in bits.
<p> The routines named <code>extend[8]</code> and <code>fp[8]</code>
return reduced results, while <code>extend_[byte/char/int/long]</code>
do not. An <em>un</em>reduced result is a number that is equal (mod
</code>polynomial</code> to the desired fingerprint but may have
degree <code>degree</code> or higher. The method <code>reduce</code>
reduces such a result to a polynomial of degree less than
<code>degree</code>. Obtaining reduced results takes longer than
obtaining unreduced results; thus, when fingerprinting long strings,
it's better to obtain irreduced results inside the fingerprinting loop
and use <code>reduce</code> to reduce to a fingerprint after the loop.
*/
// Tested by: TestFPGenerator
@SuppressWarnings("unchecked")
class FPGeneratorImpl {
/** Return a fingerprint generator. The fingerprints generated
will have degree <code>degree</code> and will be generated by
<code>polynomial</code>. If a generator based on
<code>polynomial</code> has already been created, it will be
returned. Requires that <code>polynomial</code> is an
irreducible polynomial of degree <code>degree</code> (the
array <code>polynomials</code> contains some irreducible
polynomials). */
public static FPGeneratorImpl make(long polynomial, int degree) {
Long l = new Long(polynomial);
FPGeneratorImpl fpgen = (FPGeneratorImpl) generators.get(l);
if (fpgen == null) {
fpgen = new FPGeneratorImpl(polynomial, degree);
generators.put(l, fpgen);
}
return fpgen;
}
private static final Hashtable generators = new Hashtable(10);
private static final long zero = 0;
private static final long one = 0x8000000000000000L;
/** Return a value equal (mod <code>polynomial</code>) to
<code>fp</code> and of degree less than <code>degree</code>. */
public long reduce(long fp) {
int N = (8 - degree/8);
long local = (N == 8 ? 0 : fp & (-1L << 8*N));
long temp = zero;
for (int i = 0; i < N; i++) {
temp ^= ByteModTable[8+i][((int)fp) & 0xff];
fp >>>= 8;
};
return local ^ temp;
}
/** Extends <code>f</code> with lower eight bits of <code>v</code>
with<em>out</em> full reduction. In other words, returns a
polynomial that is equal (mod <code>polynomial</code>) to the
desired fingerprint but may be of higher degree than the
desired fingerprint. */
public long extend_byte(long f, int v) {
f ^= (0xff & v);
int i = (int)f;
long result = (f>>>8);
result ^= ByteModTable[7][i & 0xff];
return result;
}
/** Extends <code>f</code> with lower sixteen bits of <code>v</code>.
Does not reduce. */
public long extend_char(long f, int v) {
f ^= (0xffff & v);
int i = (int)f;
long result = (f>>>16);
result ^= ByteModTable[6][i & 0xff]; i >>>= 8;
result ^= ByteModTable[7][i & 0xff];
return result;
}
/** Extends <code>f</code> with (all bits of) <code>v</code>.
Does not reduce. */
public long extend_int(long f, int v) {
f ^= (0xffffffffL & v);
int i = (int)f;
long result = (f>>>32);
result ^= ByteModTable[4][i & 0xff]; i >>>= 8;
result ^= ByteModTable[5][i & 0xff]; i >>>= 8;
result ^= ByteModTable[6][i & 0xff]; i >>>= 8;
result ^= ByteModTable[7][i & 0xff];
return result;
}
/** Extends <code>f</code> with <code>v</code>.
Does not reduce. */
public long extend_long(long f, long v) {
f ^= v;
long result = ByteModTable[0][(int)(f & 0xff)]; f >>>= 8;
result ^= ByteModTable[1][(int)(f & 0xff)]; f >>>= 8;
result ^= ByteModTable[2][(int)(f & 0xff)]; f >>>= 8;
result ^= ByteModTable[3][(int)(f & 0xff)]; f >>>= 8;
result ^= ByteModTable[4][(int)(f & 0xff)]; f >>>= 8;
result ^= ByteModTable[5][(int)(f & 0xff)]; f >>>= 8;
result ^= ByteModTable[6][(int)(f & 0xff)]; f >>>= 8;
result ^= ByteModTable[7][(int)(f & 0xff)];
return result;
}
/** Compute fingerprint of "n" bytes of "buf" starting from
"buf[start]". Requires "[start, start+n)" is in bounds. */
public long fp(byte[] buf, int start, int n) {
return extend(empty, buf, start, n);
}
/** Compute fingerprint of (all bits of) "n" characters of "buf"
starting from "buf[i]". Requires "[i, i+n)" is in bounds. */
public long fp(char[] buf, int start, int n) {
return extend(empty, buf, start, n);
}
// COMMENTED OUT TO REMOVE Dependency on st.ata.util.Text
// /** Compute fingerprint of (all bits of) <code>t</code> */
// public long fp(Text t) {
// return extend(empty, t);
// }
/** Compute fingerprint of (all bits of) the characters of "s". */
public long fp(CharSequence s) {
return extend(empty, s);
}
/** Compute fingerprint of (all bits of) "n" characters of "buf"
starting from "buf[i]". Requires "[i, i+n)" is in bounds. */
public long fp(int[] buf, int start, int n) {
return extend(empty, buf, start, n);
}
/** Compute fingerprint of (all bits of) "n" characters of "buf"
starting from "buf[i]". Requires "[i, i+n)" is in bounds. */
public long fp(long[] buf, int start, int n) {
return extend(empty, buf, start, n);
}
/** Compute fingerprint of the lower eight bits of the characters
of "s". */
public long fp8(String s) {
return extend8(empty, s);
}
/** Compute fingerprint of the lower eight bits of "n" characters
of "buf" starting from "buf[i]". Requires "[i, i+n)" is in
bounds. */
public long fp8(char[] buf, int start, int n) {
return extend8(empty, buf, start, n);
}
/** Extends fingerprint <code>f</code> by adding the low eight
bits of "b". */
public long extend(long f, byte v) {
return reduce(extend_byte(f, v));
}
/** Extends fingerprint <code>f</code> by adding (all bits of)
"v". */
public long extend(long f, char v) {
return reduce(extend_char(f, v));
}
/** Extends fingerprint <code>f</code> by adding (all bits of)
"v". */
public long extend(long f, int v) {
return reduce(extend_int(f, v));
}
/** Extends fingerprint <code>f</code> by adding (all bits of)
"v". */
public long extend(long f, long v) {
return reduce(extend_long(f, v));
}
/** Extends fingerprint <code>f</code> by adding "n" bytes of
"buf" starting from "buf[start]".
Result is reduced.
Requires "[i, i+n)" is in bounds. */
public long extend(long f, byte[] buf, int start, int n) {
for (int i = 0; i < n; i++) {
f = extend_byte(f, buf[start+i]);
}
return reduce(f);
}
/** Extends fingerprint <code>f</code> by adding (all bits of) "n"
characters of "buf" starting from "buf[i]".
Result is reduced.
Requires "[i, i+n)" is in bounds. */
public long extend(long f, char[] buf, int start, int n) {
for (int i = 0; i < n; i++) {
f = extend_char(f, buf[start+i]);
}
return reduce(f);
}
/** Extends fingerprint <code>f</code> by adding (all bits of)
the characters of "s".
Result is reduced. */
public long extend(long f, CharSequence s) {
int n = s.length();
for (int i = 0; i < n; i++) {
int v = (int) s.charAt(i);
f = extend_char(f, v);
}
return reduce(f);
}
// COMMENTED OUT TO REMOVE Dependency on st.ata.util.Text
// /** Extends fingerprint <code>f</code> by adding (all bits of)
// * <code>t</code> */
// public long extend(long f, Text t) {
// return extend(f, t.buf, t.start, t.length());
// }
/** Extends fingerprint <code>f</code> by adding (all bits of) "n"
characters of "buf" starting from "buf[i]".
Result is reduced.
Requires "[i, i+n)" is in bounds. */
public long extend(long f, int[] buf, int start, int n) {
for (int i = 0; i < n; i++) {
f = extend_int(f, buf[start+i]);
}
return reduce(f);
}
/** Extends fingerprint <code>f</code> by adding (all bits of) "n"
characters of "buf" starting from "buf[i]".
Result is reduced.
Requires "[i, i+n)" is in bounds. */
public long extend(long f, long[] buf, int start, int n) {
for (int i = 0; i < n; i++) {
f = extend_long(f, buf[start+i]);
}
return reduce(f);
}
/** Extends fingerprint <code>f</code> by adding the lower eight
bits of the characters of "s".
Result is reduced. */
public long extend8(long f, String s) {
int n = s.length();
for (int i = 0; i < n; i++) {
int x = (int) s.charAt(i);
f = extend_byte(f, x);
}
return reduce(f);
}
/** Extends fingerprint <code>f</code> by adding the lower eight
bits of "n" characters of "buf" starting from "buf[i]".
Result is reduced.
Requires "[i, i+n)" is in bounds. */
public long extend8(long f, char[] buf, int start, int n) {
for (int i = 0; i < n; i++) {
f = extend_byte(f, buf[start+i]);
}
return reduce(f);
}
/** Fingerprint of the empty string of bytes. */
public final long empty;
/** The number of bits in fingerprints generated by
<code>this</code>. */
public final int degree;
/** The polynomial used by <code>this</code> to generate
fingerprints. */
public long polynomial;
/** Result of reducing certain polynomials. Specifically, if
<code>f(S)</code> is bit string <code>S</code> interpreted as
a polynomial, <code>f(ByteModTable[i][j])</code> equals
<code>mod(x^(127 - 8*i) * f(j), P)</code>. */
private long[][] ByteModTable;
/** Create a fingerprint generator. The fingerprints generated
will have degree <code>degree</code> and will be generated by
<code>polynomial</code>. Requires that
<code>polynomial</code> is an irreducible polynomial of degree
<code>degree</code> (the array <code>polynomials</code>
contains some irreducible polynomials). */
private FPGeneratorImpl(long polynomial, int degree) {
this.degree = degree;
this.polynomial = polynomial;
ByteModTable = new long[16][256];
long[] PowerTable = new long[128];
long x_to_the_i = one;
long x_to_the_degree_minus_one = (one >>> (degree-1));
for (int i = 0; i < 128; i++) {
// Invariants:
// x_to_the_i = mod(x^i, polynomial)
// forall 0 <= j < i, PowerTable[i] = mod(x^i, polynomial)
PowerTable[i] = x_to_the_i;
boolean overflow = ((x_to_the_i & x_to_the_degree_minus_one) != 0);
x_to_the_i >>>= 1;
if (overflow) {
x_to_the_i ^= polynomial;
}
}
this.empty = PowerTable[64];
for (int i = 0; i < 16; i++) {
// Invariant: forall 0 <= i' < i, forall 0 <= j' < 256,
// ByteModTable[i'][j'] = mod(x^(127 - 8*i') * f(j'), polynomial)
for (int j = 0; j < 256; j++) {
// Invariant: forall 0 <= i' < i, forall 0 <= j' < j,
// ByteModTable[i'][j'] = mod(x^(degree+i')*f(j'),polynomial)
long v = zero;
for (int k = 0; k < 8; k++) {
// Invariant:
// v = mod(x^(degree+i) * f(j & ((1<<k)-1)), polynomial)
if ((j & (1 << k)) != 0) {
v ^= PowerTable[127 - i*8 - k];
}
}
ByteModTable[i][j] = v;
}
}
}
/** Array of irreducible polynomials. For each degree
<code>d</code> between 1 and 64 (inclusive),
<code>polynomials[d][i]</code> is an irreducible polynomial of
degree <code>d</code>. There are at least two irreducible
polynomials for each degree. */
public static final long polynomials[][] = {
null,
{0xC000000000000000L, 0xC000000000000000L},
{0xE000000000000000L, 0xE000000000000000L},
{0xD000000000000000L, 0xB000000000000000L},
{0xF800000000000000L, 0xF800000000000000L},
{0xEC00000000000000L, 0xBC00000000000000L},
{0xDA00000000000000L, 0xB600000000000000L},
{0xE500000000000000L, 0xE500000000000000L},
{0x9680000000000000L, 0xD480000000000000L},
{0x80C0000000000000L, 0x8840000000000000L},
{0xB0A0000000000000L, 0xE9A0000000000000L},
{0xD9F0000000000000L, 0xC9B0000000000000L},
{0xE758000000000000L, 0xDE98000000000000L},
{0xE42C000000000000L, 0x94E4000000000000L},
{0xD4CE000000000000L, 0xB892000000000000L},
{0xE2AB000000000000L, 0x9E39000000000000L},
{0xCCE4800000000000L, 0x9783800000000000L},
{0xD8F8C00000000000L, 0xA9CDC00000000000L},
{0x9A28200000000000L, 0xFD79E00000000000L},
{0xC782500000000000L, 0x96CD300000000000L},
{0xBEE6880000000000L, 0xE902C80000000000L},
{0x86D7E40000000000L, 0xF066340000000000L},
{0x9888060000000000L, 0x910ABE0000000000L},
{0xFF30E30000000000L, 0xB27EFB0000000000L},
{0x8E375B8000000000L, 0xA03D948000000000L},
{0xD1415C4000000000L, 0xF5357CC000000000L},
{0x91A916E000000000L, 0xB6CE66E000000000L},
{0xE6D2FC5000000000L, 0xD55882B000000000L},
{0x9A3BA0B800000000L, 0xFBD654E800000000L},
{0xAEA5D2E400000000L, 0xF0E533AC00000000L},
{0xDA88B7BE00000000L, 0xAA3AAEDE00000000L},
{0xBA75BB4300000000L, 0xF5A811C500000000L},
{0x9B6C9A2F80000000L, 0x9603CCED80000000L},
{0xFABB538840000000L, 0xE2747090C0000000L},
{0x8358898EA0000000L, 0x8C698D3D20000000L},
{0xDA8ABD5BF0000000L, 0xF6DF3A0AF0000000L},
{0xB090C3F758000000L, 0xD3B4D3D298000000L},
{0xAD9882F5BC000000L, 0x88DA4FB544000000L},
{0xC3C366272A000000L, 0xDCCF2A2262000000L},
{0x9BC0224A97000000L, 0xAF5D96F273000000L},
{0x8643FFF621800000L, 0x8E390C6EDC800000L},
{0xE45C01919BC00000L, 0xCBB34C8945C00000L},
{0x80D8141BC2E00000L, 0x886AFC3912200000L},
{0xF605807C26500000L, 0xA3B92D28F6300000L},
{0xCE9A2CFC76280000L, 0x98400C1921280000L},
{0xF61894904C040000L, 0xC8BE6DBCEC8C0000L},
{0xE3A44C104D160000L, 0xCA84A59443760000L},
{0xC7E84953A11B0000L, 0xD9D4F6AA02CB0000L},
{0xC26CDD1C9A358000L, 0x8BE8478434328000L},
{0xAE125DBEB198C000L, 0xFCC5DBFD5AAAC000L},
{0x86DE52A079A6A000L, 0xC5F16BD883816000L},
{0xDF82486AAFE37000L, 0xA293EC735692D000L},
{0xE91ABA275C272800L, 0xD686192874E3C800L},
{0x963D0960DAB3FC00L, 0xBA9DE62072621400L},
{0xA2188C4E8A46CE00L, 0xD31F75BCB4977E00L},
{0xC43A416020A6CB00L, 0x99F57FECA12B3900L},
{0xA4F72EF82A58AE80L, 0xCECE4391B81DA380L},
{0xB39F119264BC0940L, 0x80A277D20DABB9C0L},
{0xFD6616C0CBFA0B20L, 0xED16E64117DC11A0L},
{0xFFA8BC44327B5390L, 0xEDFB13DB3B66C210L},
{0xCAE8EB99E73AB548L, 0xC86135B6EA2F0B98L},
{0xBA49BADCDD19B16CL, 0x8F1944AFB18564C4L},
{0xECFC86D765EABBEEL, 0x9190E1C46CC13702L},
{0xE1F8D6B3195D6D97L, 0xDF70267FF5E4C979L},
{0xD74307D3FD3382DBL, 0x9999B3FFDC769B48L}
};
/** The standard 64-bit fingerprint generator using
<code>polynomials[0][64]</code>. */
public static final FPGeneratorImpl std64 = make(polynomials[64][0], 64);
/** A standard 32-bit fingerprint generator using
<code>polynomials[0][32]</code>. */
public static final FPGeneratorImpl std32 = make(polynomials[32][0], 32);
// Below added by St.Ack on 09/30/2004.
/** A standard 40-bit fingerprint generator using
<code>polynomials[0][40]</code>. */
public static final FPGeneratorImpl std40 = make(polynomials[40][0], 40);
/** A standard 24-bit fingerprint generator using
<code>polynomials[0][24]</code>. */
public static final FPGeneratorImpl std24 = make(polynomials[24][0], 24);
}