package com.tns; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.lang.ref.ReferenceQueue; import java.lang.ref.WeakReference; import java.util.AbstractCollection; import java.util.AbstractSet; import java.util.Arrays; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; /** * WeakHashMap is an implementation of Map with keys which are WeakReferences. A * key/value mapping is removed when the key is no longer referenced. All * optional operations (adding and removing) are supported. Keys and values can * be any objects. Note that the garbage collector acts similar to a second * thread on this collection, possibly removing keys. * * @since 1.2 * @see HashMap * @see WeakReference */ public class NativeScriptWeakHashMap<K, V> extends NativeScriptAbstractMap<K, V> implements Map<K, V> { private static final int DEFAULT_SIZE = 16; private final ReferenceQueue<K> referenceQueue; int elementCount; Entry<K, V>[] elementData; private final int loadFactor; private int threshold; volatile int modCount; // Simple utility method to isolate unchecked cast for array creation @SuppressWarnings("unchecked") private static <K, V> Entry<K, V>[] newEntryArray(int size) { return new Entry[size]; } private static final class Entry<K, V> extends WeakReference<K> implements Map.Entry<K, V> { final int hash; boolean isNull; V value; Entry<K, V> next; interface Type<RET, K, V> { RET get(Map.Entry<K, V> entry); } Entry(K key, V object, ReferenceQueue<K> queue) { super(key, queue); isNull = key == null; hash = isNull ? 0 : secondaryHashForObject(key); value = object; } public K getKey() { return super.get(); } public V getValue() { return value; } public V setValue(V object) { V result = value; value = object; return result; } @Override public boolean equals(Object other) { if (!(other instanceof Map.Entry)) { return false; } Map.Entry<?, ?> entry = (Map.Entry<?, ?>) other; Object key = super.get(); return (key == null ? key == entry.getKey() : key.equals(entry.getKey())) && (value == null ? value == entry.getValue() : value.equals(entry.getValue())); } @Override public int hashCode() { return hash + (value == null ? 0 : value.hashCode()); } @Override public String toString() { return super.get() + "=" + value; } } class HashIterator<RET> implements Iterator<RET> { private int position = 0, expectedModCount; private Entry<K, V> currentEntry, nextEntry; private K nextKey; final Entry.Type<RET, K, V> type; HashIterator(Entry.Type<RET, K, V> type) { this.type = type; expectedModCount = modCount; } public boolean hasNext() { if (nextEntry != null && (nextKey != null || nextEntry.isNull)) { return true; } while (true) { if (nextEntry == null) { while (position < elementData.length) { if ((nextEntry = elementData[position++]) != null) { break; } } if (nextEntry == null) { return false; } } // ensure key of next entry is not gc'ed nextKey = nextEntry.get(); if (nextKey != null || nextEntry.isNull) { return true; } nextEntry = nextEntry.next; } } public RET next() { if (expectedModCount == modCount) { if (hasNext()) { currentEntry = nextEntry; nextEntry = currentEntry.next; RET result = type.get(currentEntry); // free the key nextKey = null; return result; } throw new NoSuchElementException(); } throw new ConcurrentModificationException(); } public void remove() { if (expectedModCount == modCount) { if (currentEntry != null) { removeEntry(currentEntry); currentEntry = null; expectedModCount++; // cannot poll() as that would change the expectedModCount } else { throw new IllegalStateException(); } } else { throw new ConcurrentModificationException(); } } } /** * Constructs a new empty {@code WeakHashMap} instance. */ public NativeScriptWeakHashMap() { this(DEFAULT_SIZE); } /** * Constructs a new {@code WeakHashMap} instance with the specified * capacity. * * @param capacity * the initial capacity of this map. * @throws IllegalArgumentException * if the capacity is less than zero. */ public NativeScriptWeakHashMap(int capacity) { if (capacity < 0) { throw new IllegalArgumentException("capacity < 0: " + capacity); } elementCount = 0; elementData = newEntryArray(capacity == 0 ? 1 : capacity); loadFactor = 7500; // Default load factor of 0.75 computeMaxSize(); referenceQueue = new ReferenceQueue<K>(); } /** * Constructs a new {@code WeakHashMap} instance with the specified capacity * and load factor. * * @param capacity * the initial capacity of this map. * @param loadFactor * the initial load factor. * @throws IllegalArgumentException * if the capacity is less than zero or the load factor is less * or equal to zero. */ public NativeScriptWeakHashMap(int capacity, float loadFactor) { if (capacity < 0) { throw new IllegalArgumentException("capacity < 0: " + capacity); } if (loadFactor <= 0) { throw new IllegalArgumentException("loadFactor <= 0: " + loadFactor); } elementCount = 0; elementData = newEntryArray(capacity == 0 ? 1 : capacity); this.loadFactor = (int) (loadFactor * 10000); computeMaxSize(); referenceQueue = new ReferenceQueue<K>(); } /** * Constructs a new {@code WeakHashMap} instance containing the mappings * from the specified map. * * @param map * the mappings to add. */ public NativeScriptWeakHashMap(Map<? extends K, ? extends V> map) { this(map.size() < 6 ? 11 : map.size() * 2); putAllImpl(map); } /** * Removes all mappings from this map, leaving it empty. * * @see #isEmpty() * @see #size() */ @Override public void clear() { if (elementCount > 0) { elementCount = 0; Arrays.fill(elementData, null); modCount++; while (referenceQueue.poll() != null) { // do nothing } } } private void computeMaxSize() { threshold = (int) ((long) elementData.length * loadFactor / 10000); } /** * Returns whether this map contains the specified key. * * @param key * the key to search for. * @return {@code true} if this map contains the specified key, {@code false} otherwise. */ @Override public boolean containsKey(Object key) { return getEntry(key) != null; } /** * Returns a set containing all of the mappings in this map. Each mapping is * an instance of {@link Map.Entry}. As the set is backed by this map, * changes in one will be reflected in the other. It does not support adding * operations. * * @return a set of the mappings. */ @Override public Set<Map.Entry<K, V>> entrySet() { poll(); return new AbstractSet<Map.Entry<K, V>>() { @Override public int size() { return NativeScriptWeakHashMap.this.size(); } @Override public void clear() { NativeScriptWeakHashMap.this.clear(); } @Override public boolean remove(Object object) { if (contains(object)) { NativeScriptWeakHashMap.this.remove(((Map.Entry<?, ?>) object).getKey()); return true; } return false; } @Override public boolean contains(Object object) { if (object instanceof Map.Entry) { Entry<?, ?> entry = getEntry(((Map.Entry<?, ?>) object).getKey()); if (entry != null) { Object key = entry.get(); if (key != null || entry.isNull) { return object.equals(entry); } } } return false; } @Override public Iterator<Map.Entry<K, V>> iterator() { return new HashIterator<Map.Entry<K, V>>(new Entry.Type<Map.Entry<K, V>, K, V>() { public Map.Entry<K, V> get(Map.Entry<K, V> entry) { return entry; } }); } }; } /** * Returns a set of the keys contained in this map. The set is backed by * this map so changes to one are reflected by the other. The set does not * support adding. * * @return a set of the keys. */ @Override public Set<K> keySet() { poll(); if (keySet == null) { keySet = new AbstractSet<K>() { @Override public boolean contains(Object object) { return containsKey(object); } @Override public int size() { return NativeScriptWeakHashMap.this.size(); } @Override public void clear() { NativeScriptWeakHashMap.this.clear(); } @Override public boolean remove(Object key) { if (containsKey(key)) { NativeScriptWeakHashMap.this.remove(key); return true; } return false; } @Override public Iterator<K> iterator() { return new HashIterator<K>(new Entry.Type<K, K, V>() { public K get(Map.Entry<K, V> entry) { return entry.getKey(); } }); } }; } return keySet; } /** * Returns a collection of the values contained in this map. The collection * is backed by this map so changes to one are reflected by the other. The * collection supports remove, removeAll, retainAll and clear operations, * and it does not support add or addAll operations. * <p> * This method returns a collection which is the subclass of AbstractCollection. The iterator method of this subclass returns a "wrapper object" over the iterator of map's entrySet(). The size method wraps the map's size method and the contains method wraps the map's containsValue method. * <p> * The collection is created when this method is called at first time and returned in response to all subsequent calls. This method may return different Collection when multiple calls to this method, since it has no synchronization performed. * * @return a collection of the values contained in this map. */ @Override public Collection<V> values() { poll(); if (valuesCollection == null) { valuesCollection = new AbstractCollection<V>() { @Override public int size() { return NativeScriptWeakHashMap.this.size(); } @Override public void clear() { NativeScriptWeakHashMap.this.clear(); } @Override public boolean contains(Object object) { return containsValue(object); } @Override public Iterator<V> iterator() { return new HashIterator<V>(new Entry.Type<V, K, V>() { public V get(Map.Entry<K, V> entry) { return entry.getValue(); } }); } }; } return valuesCollection; } /** * Returns the value of the mapping with the specified key. * * @param key * the key. * @return the value of the mapping with the specified key, or {@code null} if no mapping for the specified key is found. */ @Override public V get(Object key) { poll(); if (key != null) { int index = (secondaryHashForObject(key) & 0x7FFFFFFF) % elementData.length; Entry<K, V> entry = elementData[index]; while (entry != null) { if (key.equals(entry.get())) { return entry.value; } entry = entry.next; } return null; } Entry<K, V> entry = elementData[0]; while (entry != null) { if (entry.isNull) { return entry.value; } entry = entry.next; } return null; } Entry<K, V> getEntry(Object key) { poll(); if (key != null) { int index = (secondaryHashForObject(key) & 0x7FFFFFFF) % elementData.length; Entry<K, V> entry = elementData[index]; while (entry != null) { if (key.equals(entry.get())) { return entry; } entry = entry.next; } return null; } Entry<K, V> entry = elementData[0]; while (entry != null) { if (entry.isNull) { return entry; } entry = entry.next; } return null; } /** * Returns whether this map contains the specified value. * * @param value * the value to search for. * @return {@code true} if this map contains the specified value, {@code false} otherwise. */ @Override public boolean containsValue(Object value) { poll(); if (value != null) { for (int i = elementData.length; --i >= 0;) { Entry<K, V> entry = elementData[i]; while (entry != null) { K key = entry.get(); if ((key != null || entry.isNull) && value.equals(entry.value)) { return true; } entry = entry.next; } } } else { for (int i = elementData.length; --i >= 0;) { Entry<K, V> entry = elementData[i]; while (entry != null) { K key = entry.get(); if ((key != null || entry.isNull) && entry.value == null) { return true; } entry = entry.next; } } } return false; } /** * Returns the number of elements in this map. * * @return the number of elements in this map. */ @Override public boolean isEmpty() { return size() == 0; } @SuppressWarnings("unchecked") void poll() { Entry<K, V> toRemove; while ((toRemove = (Entry<K, V>) referenceQueue.poll()) != null) { removeEntry(toRemove); } } void removeEntry(Entry<K, V> toRemove) { Entry<K, V> entry, last = null; int index = (toRemove.hash & 0x7FFFFFFF) % elementData.length; entry = elementData[index]; // Ignore queued entries which cannot be found, the user could // have removed them before they were queued, i.e. using clear() while (entry != null) { if (toRemove == entry) { modCount++; if (last == null) { elementData[index] = entry.next; } else { last.next = entry.next; } elementCount--; break; } last = entry; entry = entry.next; } } /** * Maps the specified key to the specified value. * * @param key * the key. * @param value * the value. * @return the value of any previous mapping with the specified key or {@code null} if there was no mapping. */ @Override public V put(K key, V value) { poll(); int index = 0; Entry<K, V> entry; if (key != null) { index = (secondaryHashForObject(key) & 0x7FFFFFFF) % elementData.length; entry = elementData[index]; while (entry != null && !key.equals(entry.get())) { entry = entry.next; } } else { entry = elementData[0]; while (entry != null && !entry.isNull) { entry = entry.next; } } if (entry == null) { modCount++; if (++elementCount > threshold) { rehash(); index = key == null ? 0 : (secondaryHashForObject(key) & 0x7FFFFFFF) % elementData.length; } entry = new Entry<K, V>(key, value, referenceQueue); entry.next = elementData[index]; elementData[index] = entry; return null; } V result = entry.value; entry.value = value; return result; } private void rehash() { int length = elementData.length * 2; if (length == 0) { length = 1; } Entry<K, V>[] newData = newEntryArray(length); for (int i = 0; i < elementData.length; i++) { Entry<K, V> entry = elementData[i]; while (entry != null) { int index = entry.isNull ? 0 : (entry.hash & 0x7FFFFFFF) % length; Entry<K, V> next = entry.next; entry.next = newData[index]; newData[index] = entry; entry = next; } } elementData = newData; computeMaxSize(); } /** * Copies all the mappings in the given map to this map. These mappings will * replace all mappings that this map had for any of the keys currently in * the given map. * * @param map * the map to copy mappings from. * @throws NullPointerException * if {@code map} is {@code null}. */ @Override public void putAll(Map<? extends K, ? extends V> map) { putAllImpl(map); } /** * Removes the mapping with the specified key from this map. * * @param key * the key of the mapping to remove. * @return the value of the removed mapping or {@code null} if no mapping * for the specified key was found. */ @Override public V remove(Object key) { poll(); int index = 0; Entry<K, V> entry, last = null; if (key != null) { index = (secondaryHashForObject(key) & 0x7FFFFFFF) % elementData.length; entry = elementData[index]; while (entry != null && !key.equals(entry.get())) { last = entry; entry = entry.next; } } else { entry = elementData[0]; while (entry != null && !entry.isNull) { last = entry; entry = entry.next; } } if (entry != null) { modCount++; if (last == null) { elementData[index] = entry.next; } else { last.next = entry.next; } elementCount--; return entry.value; } return null; } /** * Returns the number of elements in this map. * * @return the number of elements in this map. */ @Override public int size() { poll(); return elementCount; } private void putAllImpl(Map<? extends K, ? extends V> map) { if (map.entrySet() != null) { super.putAll(map); } } private static int secondaryHashForObject(Object key) { int intHash; if (key instanceof NativeScriptHashCodeProvider) { NativeScriptHashCodeProvider provider = (NativeScriptHashCodeProvider) key; intHash = provider.hashCode__super(); } else { intHash = System.identityHashCode(key); } return secondaryHashForInt(intHash); } private static int secondaryHashForInt(int h) { // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); } }