/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.aliyun.odps.mapred.local;
import java.io.IOException;
import java.util.Iterator;
import java.util.List;
import org.junit.Assert;
import org.junit.Test;
import com.aliyun.odps.counter.Counter;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.data.TableInfo;
import com.aliyun.odps.local.common.WareHouse;
import com.aliyun.odps.mapred.JobClient;
import com.aliyun.odps.mapred.MapperBase;
import com.aliyun.odps.mapred.ReducerBase;
import com.aliyun.odps.mapred.conf.JobConf;
import com.aliyun.odps.mapred.local.utils.TestUtils;
import com.aliyun.odps.mapred.utils.InputUtils;
import com.aliyun.odps.mapred.utils.OutputUtils;
import com.aliyun.odps.mapred.utils.SchemaUtils;
/**
* This is an example ODPS Map/Reduce application. It reads the input table, map
* each column into words and counts them. The output is a locally sorted list
* of words and the count of how often they occurred.
* <p>
* To run: jar -libjars mapreduce-examples.jar -classpath
* clt/lib/mapreduce-examples.jar com.aliyun.odps.mapreduce.examples.WordCount
* <i>in-tbl</i> <i>out-tbl</i>
*/
public class WordCount {
/**
* Counts the words in each record. For each record, emit each column as
* (<b>word</b>, <b>1</b>).
*/
public static class TokenizerMapper extends MapperBase {
Record word;
Record one;
Counter gCnt;
@Override
public void setup(TaskContext context) throws IOException {
word = context.createMapOutputKeyRecord();
one = context.createMapOutputValueRecord();
one.set(new Object[]{1L});
gCnt = context.getCounter("MyCounters", "global_counts");
}
@Override
public void map(long recordNum, Record record, TaskContext context)
throws IOException {
for (int i = 0; i < record.getColumnCount(); i++) {
String[] words = record.get(i).toString().split("\\s+");
for (String w : words) {
word.set(new Object[]{w});
Counter cnt = context.getCounter("MyCounters", "map_outputs");
cnt.increment(1);
gCnt.increment(1);
context.write(word, one);
}
}
}
}
/**
* A combiner class that combines map output by sum them.
*/
public static class SumCombiner extends ReducerBase {
private Record count;
@Override
public void setup(TaskContext context) throws IOException {
count = context.createMapOutputValueRecord();
}
@Override
public void reduce(Record key, Iterator<Record> values, TaskContext context)
throws IOException {
long c = 0;
while (values.hasNext()) {
Record val = values.next();
c += (Long) val.get(0);
}
count.set(0, c);
context.write(key, count);
}
}
/**
* A reducer class that just emits the sum of the input values.
*/
public static class SumReducer extends ReducerBase {
private Record result;
Counter gCnt;
@Override
public void setup(TaskContext context) throws IOException {
result = context.createOutputRecord();
gCnt = context.getCounter("MyCounters", "global_counts");
}
@Override
public void reduce(Record key, Iterator<Record> values, TaskContext context)
throws IOException {
long count = 0;
while (values.hasNext()) {
Record val = values.next();
count += (Long) val.get(0);
}
result.set(0, key.get(0));
result.set(1, count);
Counter cnt = context.getCounter("MyCounters", "reduce_outputs");
cnt.increment(1);
gCnt.increment(1);
context.write(result);
}
}
public static void main(String[] args) throws Exception {
if (args.length != 3) {
System.err.println("Usage: wordcount <in_table> <out_table>");
System.exit(2);
}
JobConf job = new JobConf();
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(SumCombiner.class);
job.setReducerClass(SumReducer.class);
job.setMapOutputKeySchema(SchemaUtils.fromString("word:string"));
job.setMapOutputValueSchema(SchemaUtils.fromString("count:bigint"));
InputUtils.addTable(TableInfo.builder().tableName(args[0]).build(), job);
InputUtils.addTable(TableInfo.builder().tableName(args[1]).partSpec("p1=1/p2=2").build(), job);
InputUtils.addTable(TableInfo.builder().tableName(args[1]).partSpec("p1=1").build(), job);
OutputUtils.addTable(TableInfo.builder().tableName(args[2]).build(), job);
JobClient.runJob(job);
}
@Test
public void test() throws Exception {
WareHouse wareHouse = WareHouse.getInstance();
String project = TestUtils.odps_test_mrtask;
String outputTable = "wordcount_out";
TestUtils.setEnvironment(project);
//If output table exists then delete data (will not delete schema)
wareHouse.dropTableDataIfExists(project, outputTable, null);
Assert.assertEquals(true, wareHouse.isTableEmpty(project, outputTable, null));
new WordCount().main(new String[]{"l_ss", "l_p_ss", outputTable});
Assert.assertEquals(false, wareHouse.isTableEmpty(project, outputTable, null));
//read output table data
List<Object[]> result = wareHouse.readData(project, outputTable, null, null, ',');
Assert.assertEquals(4, result.size());
// Sampling inspection
Object[] record = result.get(0);
Assert.assertEquals(2, record.length);
Assert.assertEquals(true, record[0] instanceof String);
Assert.assertEquals(true, record[1] instanceof Long);
Assert.assertEquals("key1", record[0]);
Assert.assertEquals(4L, record[1]);
}
}