// Fast Fourier Transform (FFT) Code // Java implementation by: Craig A. Lindley // Last Update: 02/27/99 package craigl.spectrumanalyzer; import org.apache.log4j.Logger; /* * libfft.c - fast Fourier transform library** Copyright (C) 1989 by Jef * Poskanzer.** Permission to use, copy, modify, and distribute this software * and its* documentation for any purpose and without fee is hereby granted, * provided* that the above copyright notice appear in all copies and that both * that* copyright notice and this permission notice appear in supporting* * documentation. This software is provided "as is" without express or* implied * warranty. */ public class FFT { /** * This is a Java implementation of the fast Fourier transform written by Jef * Poskanzer. The copyright appears above. */ public static final transient Logger LOG = Logger.getLogger(FFT.class); // Limits on the number of bits this algorithm can utilize private static final int LOG2_MAXFFTSIZE = 15; private static final int MAXFFTSIZE = 1 << LOG2_MAXFFTSIZE; private static final double TWOPI = 2.0 * Math.PI; private int[] bitreverse = new int[MAXFFTSIZE]; // Private class data private int bits; /** * FFT class constructor Initializes code for doing a fast Fourier transform * * @param int bits is a power of two such that 2^b is the number of samples. */ public FFT(int bits) { this.bits = bits; if (bits > LOG2_MAXFFTSIZE) { LOG.fatal("" + bits + " is too big"); System.exit(1); } for (int i = (1 << bits) - 1; i >= 0; --i) { int k = 0; for (int j = 0; j < bits; ++j) { k *= 2; if ((i & (1 << j)) != 0) k++; } this.bitreverse[i] = k; } } /** * A fast Fourier transform routine * * @param double [] xr is the real part of the data to be transformed * @param double [] xi is the imaginary part of the data to be transformed * (normally zero unless inverse transofrm is effect). * @param boolean invFlag which is true if inverse transform is being applied. * false for a forward transform. */ public void doFFT(double[] xr, double[] xi, boolean invFlag) { int n, n2, i, k, kn2, l, p; double ang, s, c, tr, ti; n2 = (n = (1 << this.bits)) / 2; for (l = 0; l < this.bits; ++l) { for (k = 0; k < n; k += n2) { for (i = 0; i < n2; ++i, ++k) { p = this.bitreverse[k / n2]; ang = TWOPI * p / n; c = Math.cos(ang); s = Math.sin(ang); kn2 = k + n2; if (invFlag) s = -s; tr = xr[kn2] * c + xi[kn2] * s; ti = xi[kn2] * c - xr[kn2] * s; xr[kn2] = xr[k] - tr; xi[kn2] = xi[k] - ti; xr[k] += tr; xi[k] += ti; } } n2 /= 2; } for (k = 0; k < n; k++) { if ((i = this.bitreverse[k]) <= k) continue; tr = xr[k]; ti = xi[k]; xr[k] = xr[i]; xi[k] = xi[i]; xr[i] = tr; xi[i] = ti; } // Finally, multiply each value by 1/n, if this is the forward // transform. if (!invFlag) { double f = 1.0 / n; for (i = 0; i < n; i++) { xr[i] *= f; xi[i] *= f; } } } }