// Fast Fourier Transform (FFT) Code
// Java implementation by: Craig A. Lindley
// Last Update: 02/27/99
package craigl.spectrumanalyzer;
import org.apache.log4j.Logger;
/*
* libfft.c - fast Fourier transform library** Copyright (C) 1989 by Jef
* Poskanzer.** Permission to use, copy, modify, and distribute this software
* and its* documentation for any purpose and without fee is hereby granted,
* provided* that the above copyright notice appear in all copies and that both
* that* copyright notice and this permission notice appear in supporting*
* documentation. This software is provided "as is" without express or* implied
* warranty.
*/
public class FFT {
/**
* This is a Java implementation of the fast Fourier transform written by Jef
* Poskanzer. The copyright appears above.
*/
public static final transient Logger LOG = Logger.getLogger(FFT.class);
// Limits on the number of bits this algorithm can utilize
private static final int LOG2_MAXFFTSIZE = 15;
private static final int MAXFFTSIZE = 1 << LOG2_MAXFFTSIZE;
private static final double TWOPI = 2.0 * Math.PI;
private int[] bitreverse = new int[MAXFFTSIZE];
// Private class data
private int bits;
/**
* FFT class constructor Initializes code for doing a fast Fourier transform
*
* @param int bits is a power of two such that 2^b is the number of samples.
*/
public FFT(int bits) {
this.bits = bits;
if (bits > LOG2_MAXFFTSIZE) {
LOG.fatal("" + bits + " is too big");
System.exit(1);
}
for (int i = (1 << bits) - 1; i >= 0; --i) {
int k = 0;
for (int j = 0; j < bits; ++j) {
k *= 2;
if ((i & (1 << j)) != 0)
k++;
}
this.bitreverse[i] = k;
}
}
/**
* A fast Fourier transform routine
*
* @param double [] xr is the real part of the data to be transformed
* @param double [] xi is the imaginary part of the data to be transformed
* (normally zero unless inverse transofrm is effect).
* @param boolean invFlag which is true if inverse transform is being applied.
* false for a forward transform.
*/
public void doFFT(double[] xr, double[] xi, boolean invFlag) {
int n, n2, i, k, kn2, l, p;
double ang, s, c, tr, ti;
n2 = (n = (1 << this.bits)) / 2;
for (l = 0; l < this.bits; ++l) {
for (k = 0; k < n; k += n2) {
for (i = 0; i < n2; ++i, ++k) {
p = this.bitreverse[k / n2];
ang = TWOPI * p / n;
c = Math.cos(ang);
s = Math.sin(ang);
kn2 = k + n2;
if (invFlag)
s = -s;
tr = xr[kn2] * c + xi[kn2] * s;
ti = xi[kn2] * c - xr[kn2] * s;
xr[kn2] = xr[k] - tr;
xi[kn2] = xi[k] - ti;
xr[k] += tr;
xi[k] += ti;
}
}
n2 /= 2;
}
for (k = 0; k < n; k++) {
if ((i = this.bitreverse[k]) <= k)
continue;
tr = xr[k];
ti = xi[k];
xr[k] = xr[i];
xi[k] = xi[i];
xr[i] = tr;
xi[i] = ti;
}
// Finally, multiply each value by 1/n, if this is the forward
// transform.
if (!invFlag) {
double f = 1.0 / n;
for (i = 0; i < n; i++) {
xr[i] *= f;
xi[i] *= f;
}
}
}
}