/*
* Copyright 2011 Christian Thiemann <christian@spato.net>
* Developed at Northwestern University <http://rocs.northwestern.edu>
*
* This file is part of the SPaTo Visual Explorer (SPaTo).
*
* SPaTo is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* SPaTo is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with SPaTo. If not, see <http://www.gnu.org/licenses/>.
*/
package net.spato.sve.app.layout;
import processing.core.PApplet;
/**
* Albers projection for map view
*/
public class AlbersProjection extends Projection {
private float lat[] = null, lon[] = null; // temp arrays (need all lat/lon data to determine Albers parameters)
public AlbersProjection(int NN) { super(NN); }
public void beginData() {
super.beginData();
lat = new float[N];
lon = new float[N];
}
// collect points in temporary arrays
public void setPoint(int i, float lat, float lon) {
this.lat[i] = lat;
this.lon[i] = lon;
}
// determine parameters and project the points
public void endData() {
float minlat = PApplet.min(lat), maxlat = PApplet.max(lat), dlat = maxlat - minlat;
float minlon = PApplet.min(lon), maxlon = PApplet.max(lon);
float phi0 = (minlat + maxlat)/2*PApplet.PI/180, lam0 = (minlon + maxlon)/2*PApplet.PI/180; // projection origin
float phi1 = (minlat + dlat/6)*PApplet.PI/180, phi2 = (maxlat - dlat/6)*PApplet.PI/180; // standard parallels
float n = 0.5f*(PApplet.sin(phi1) + PApplet.sin(phi2));
float C = PApplet.cos(phi1)*PApplet.cos(phi1) + 2*n*PApplet.sin(phi1);
float rho0 = PApplet.sqrt(C - 2*n*PApplet.sin(phi0))/n;
float rho, theta;
for (int i = 0; i < N; i++) {
rho = PApplet.sqrt(C - 2*n*PApplet.sin(lat[i]*PApplet.PI/180))/n;
theta = n*(lon[i]*PApplet.PI/180 - lam0);
super.setPoint(i, rho*PApplet.sin(theta), -(rho0 - rho*PApplet.cos(theta)));
}
super.endData();
lat = null; lon = null;
}
}