/*
* MersenneTwisterFast.java
*
* Copyright (C) 2002-2006 Alexei Drummond and Andrew Rambaut
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package math;
import java.io.Serializable;
/**
* MersenneTwisterFast:
* <p/>
* A simulation quality fast random number generator (MT19937) with the same
* public methods as java.util.Random.
* <p/>
* <p>
* About the Mersenne Twister. This is a Java version of the C-program for
* MT19937: Integer version. next(32) generates one pseudorandom unsigned
* integer (32bit) which is uniformly distributed among 0 to 2^32-1 for each
* call. next(int bits) >>>'s by (32-bits) to get a value ranging between 0 and
* 2^bits-1 long inclusive; hope that's correct. setSeed(seed) set initial
* values to the working area of 624 words. For setSeed(seed), seed is any
* 32-bit integer except for 0.
* <p/>
* Reference. M. Matsumoto and T. Nishimura, "Mersenne Twister: A
* 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator",
* <i>ACM Transactions on Modeling and Computer Simulation,</i> Vol. 8, No. 1,
* January 1998, pp 3--30.
* <p/>
* <p>
* Bug Fixes. This implementation implements the bug fixes made in Java 1.2's
* version of Random, which means it can be used with earlier versions of Java.
* See <a href=
* "http://www.javasoft.com/products/jdk/1.2/docs/api/java/util/Random.html">
* the JDK 1.2 java.util.Random documentation</a> for further documentation on
* the random-number generation contracts made. Additionally, there's an
* undocumented bug in the JDK java.util.Random.nextBytes() method, which this
* code fixes.
* <p/>
* <p>
* Important Note. Just like java.util.Random, this generator accepts a long
* seed but doesn't use all of it. java.util.Random uses 48 bits. The Mersenne
* Twister instead uses 32 bits (int size). So it's best if your seed does not
* exceed the int range.
* <p/>
* <p>
* <a href="http://www.cs.umd.edu/users/seanl/">Sean Luke's web page</a>
* <p/>
* <p/>
* - added shuffling method (Alexei Drummond)
* <p/>
* - added gamma RV method (Marc Suchard)
* <p/>
* This is now package private - it should be accessed using the instance in
* Random
*/
class MersenneTwisterFast implements Serializable {
/**
*
*/
private static final long serialVersionUID = 6185086957226269797L;
// Period parameters
private static final int N = 624;
private static final int M = 397;
private static final int MATRIX_A = 0x9908b0df; // private static final *
// constant vector a
private static final int UPPER_MASK = 0x80000000; // most significant w-r
// bits
private static final int LOWER_MASK = 0x7fffffff; // least significant r
// bits
// Tempering parameters
private static final int TEMPERING_MASK_B = 0x9d2c5680;
private static final int TEMPERING_MASK_C = 0xefc60000;
// #define TEMPERING_SHIFT_U(y) (y >>> 11)
// #define TEMPERING_SHIFT_S(y) (y << 7)
// #define TEMPERING_SHIFT_T(y) (y << 15)
// #define TEMPERING_SHIFT_L(y) (y >>> 18)
private int mt[]; // the array for the state vector
private int mti; // mti==N+1 means mt[N] is not initialized
private int mag01[];
// a good initial seed (of int size, though stored in a long)
private static final long GOOD_SEED = 4357;
private double nextNextGaussian;
private boolean haveNextNextGaussian;
// The following can be accessed externally by the static accessor methods
// which
// inforce synchronization
public static final MersenneTwisterFast DEFAULT_INSTANCE = new MersenneTwisterFast();
// Added to curernt time in default constructor, and then adjust to allow
// for programs that construct
// multiple MersenneTwisterFast in a short amount of time.
private static long seedAdditive_ = 0;
private long initializationSeed;
/**
* Constructor using the time of day as default seed.
*/
public MersenneTwisterFast() {
this(System.currentTimeMillis() + seedAdditive_);
seedAdditive_ += nextInt();
}
/**
* Constructor using a given seed. Though you pass this seed in as a long,
* it's best to make sure it's actually an integer.
*
* @param seed
* generator starting number, often the time of day.
*/
private MersenneTwisterFast(long seed) {
if (seed == 0) {
setSeed(GOOD_SEED);
} else {
setSeed(seed);
}
}
/**
* Initalize the pseudo random number generator. The Mersenne Twister only
* uses an integer for its seed; It's best that you don't pass in a long
* that's bigger than an int.
*
* @param seed
* from constructor
*/
public final void setSeed(long seed) {
if (seed == 0) {
throw new IllegalArgumentException("Non zero random seed required.");
}
initializationSeed = seed;
haveNextNextGaussian = false;
mt = new int[N];
// setting initial seeds to mt[N] using
// the generator Line 25 of Table 1 in
// [KNUTH 1981, The Art of Computer Programming
// Vol. 2 (2nd Ed.), pp102]
// the 0xffffffff is commented out because in Java
// ints are always 32 bits; hence i & 0xffffffff == i
mt[0] = ((int) seed); // & 0xffffffff;
for (mti = 1; mti < N; mti++)
mt[mti] = (69069 * mt[mti - 1]); // & 0xffffffff;
// mag01[x] = x * MATRIX_A for x=0,1
mag01 = new int[2];
mag01[0] = 0x0;
mag01[1] = MATRIX_A;
}
public final long getSeed() {
return initializationSeed;
}
public final int nextInt() {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return y;
}
public final short nextShort() {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return (short) (y >>> 16);
}
public final char nextChar() {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return (char) (y >>> 16);
}
public final boolean nextBoolean() {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return ((y >>> 31) != 0);
}
public final byte nextByte() {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return (byte) (y >>> 24);
}
public final void nextBytes(byte[] bytes) {
int y;
for (int x = 0; x < bytes.length; x++) {
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
bytes[x] = (byte) (y >>> 24);
}
}
public final long nextLong() {
int y;
int z;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (z >>> 1) ^ mag01[z & 0x1];
}
for (; kk < N - 1; kk++) {
z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (z >>> 1) ^ mag01[z & 0x1];
}
z = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (z >>> 1) ^ mag01[z & 0x1];
mti = 0;
}
z = mt[mti++];
z ^= z >>> 11; // TEMPERING_SHIFT_U(z)
z ^= (z << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z)
z ^= (z << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z)
z ^= (z >>> 18); // TEMPERING_SHIFT_L(z)
return (((long) y) << 32) + (long) z;
}
public final double nextDouble() {
int y;
int z;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (z >>> 1) ^ mag01[z & 0x1];
}
for (; kk < N - 1; kk++) {
z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (z >>> 1) ^ mag01[z & 0x1];
}
z = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (z >>> 1) ^ mag01[z & 0x1];
mti = 0;
}
z = mt[mti++];
z ^= z >>> 11; // TEMPERING_SHIFT_U(z)
z ^= (z << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z)
z ^= (z << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z)
z ^= (z >>> 18); // TEMPERING_SHIFT_L(z)
/* derived from nextDouble documentation in jdk 1.2 docs, see top */
return ((((long) (y >>> 6)) << 27) + (z >>> 5)) / (double) (1L << 53);
}
public final double nextGaussian() {
if (haveNextNextGaussian) {
haveNextNextGaussian = false;
return nextNextGaussian;
} else {
double v1, v2, s;
do {
int y;
int z;
int a;
int b;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (z >>> 1) ^ mag01[z & 0x1];
}
for (; kk < N - 1; kk++) {
z = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (z >>> 1) ^ mag01[z & 0x1];
}
z = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (z >>> 1) ^ mag01[z & 0x1];
mti = 0;
}
z = mt[mti++];
z ^= z >>> 11; // TEMPERING_SHIFT_U(z)
z ^= (z << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(z)
z ^= (z << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(z)
z ^= (z >>> 18); // TEMPERING_SHIFT_L(z)
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
a = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (a >>> 1) ^ mag01[a & 0x1];
}
for (; kk < N - 1; kk++) {
a = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (a >>> 1) ^ mag01[a & 0x1];
}
a = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (a >>> 1) ^ mag01[a & 0x1];
mti = 0;
}
a = mt[mti++];
a ^= a >>> 11; // TEMPERING_SHIFT_U(a)
a ^= (a << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(a)
a ^= (a << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(a)
a ^= (a >>> 18); // TEMPERING_SHIFT_L(a)
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
b = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (b >>> 1) ^ mag01[b & 0x1];
}
for (; kk < N - 1; kk++) {
b = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (b >>> 1) ^ mag01[b & 0x1];
}
b = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (b >>> 1) ^ mag01[b & 0x1];
mti = 0;
}
b = mt[mti++];
b ^= b >>> 11; // TEMPERING_SHIFT_U(b)
b ^= (b << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(b)
b ^= (b << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(b)
b ^= (b >>> 18); // TEMPERING_SHIFT_L(b)
/*
* derived from nextDouble documentation in jdk 1.2 docs, see
* top
*/
v1 = 2 * (((((long) (y >>> 6)) << 27) + (z >>> 5)) / (double) (1L << 53)) - 1;
v2 = 2 * (((((long) (a >>> 6)) << 27) + (b >>> 5)) / (double) (1L << 53)) - 1;
s = v1 * v1 + v2 * v2;
} while (s >= 1);
double multiplier = Math.sqrt(-2 * Math.log(s) / s);
nextNextGaussian = v2 * multiplier;
haveNextNextGaussian = true;
return v1 * multiplier;
}
}
public final float nextFloat() {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return (y >>> 8) / ((float) (1 << 24));
}
/**
* Returns an integer drawn uniformly from 0 to n-1. Suffice it to say, n
* must be > 0, or an IllegalArgumentException is raised.
*/
public int nextInt(int n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
if ((n & -n) == n) // i.e., n is a power of 2
{
int y;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return (int) ((n * (long) (y >>> 1)) >> 31);
}
int bits, val;
do {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
bits = (y >>> 1);
val = bits % n;
} while (bits - val + (n - 1) < 0);
return val;
}
/**
* Returns a uniform random permutation of int objects in array
*/
public final void permute(int[] array) {
int l = array.length;
for (int i = 0; i < l; i++) {
int index = nextInt(l - i) + i;
int temp = array[index];
array[index] = array[i];
array[i] = temp;
}
}
/**
* Shuffles an array.
*/
public final void shuffle(int[] array) {
int l = array.length;
for (int i = 0; i < l; i++) {
int index = nextInt(l - i) + i;
int temp = array[index];
array[index] = array[i];
array[i] = temp;
}
}
/**
* Shuffles an array. Shuffles numberOfShuffles times
*/
public final void shuffle(int[] array, int numberOfShuffles) {
int i, j, temp, l = array.length;
for (int shuffle = 0; shuffle < numberOfShuffles; shuffle++) {
do {
i = nextInt(l);
j = nextInt(l);
} while (i != j);
temp = array[j];
array[j] = array[i];
array[i] = temp;
}
}
/**
* Returns an array of shuffled indices of length l.
*
* @param l
* length of the array required.
*/
public int[] shuffled(int l) {
int[] array = new int[l];
// initialize array
for (int i = 0; i < l; i++) {
array[i] = i;
}
shuffle(array);
return array;
}
/**
* Returns a uniform random permutation of ints 0,...,l-1
*
* @param l
* length of the array required.
*/
public int[] permuted(int l) {
int[] array = new int[l];
// initialize array
for (int i = 0; i < l; i++) {
array[i] = i;
}
permute(array);
return array;
}
public double nextGamma(double alpha, double lambda) {
/******************************************************************
* * Gamma Distribution - Acceptance Rejection combined with *
* Acceptance Complement * *
******************************************************************
* * FUNCTION: - gds samples a random number from the standard * gamma
* distribution with parameter a > 0. * Acceptance Rejection gs for a <
* 1 , * Acceptance Complement gd for a >= 1 . * REFERENCES: - J.H.
* Ahrens, U. Dieter (1974): Computer methods * for sampling from gamma,
* beta, Poisson and * binomial distributions, Computing 12, 223-246. *
* - J.H. Ahrens, U. Dieter (1982): Generating gamma * variates by a
* modified rejection technique, * Communications of the ACM 25, 47-54.
* * SUBPROGRAMS: - drand(seed) ... (0,1)-Uniform generator with *
* unsigned long integer *seed * - NORMAL(seed) ... Normal generator
* N(0,1). * *
******************************************************************/
double a = alpha;
double aa = -1.0, aaa = -1.0, b = 0.0, c = 0.0, d = 0.0, e, r, s = 0.0, si = 0.0, ss = 0.0, q0 = 0.0, q1 = 0.0416666664, q2 = 0.0208333723, q3 = 0.0079849875, q4 = 0.0015746717, q5 = -0.0003349403, q6 = 0.0003340332, q7 = 0.0006053049, q8 = -0.0004701849, q9 = 0.0001710320, a1 = 0.333333333, a2 = -0.249999949, a3 = 0.199999867, a4 = -0.166677482, a5 = 0.142873973, a6 = -0.124385581, a7 = 0.110368310, a8 = -0.112750886, a9 = 0.104089866, e1 = 1.000000000, e2 = 0.499999994, e3 = 0.166666848, e4 = 0.041664508, e5 = 0.008345522, e6 = 0.001353826, e7 = 0.000247453;
double gds, p, q, t, sign_u, u, v, w, x;
double v1, v2, v12;
// Check for invalid input values
if (a <= 0.0)
throw new IllegalArgumentException();
if (lambda <= 0.0)
new IllegalArgumentException();
if (a < 1.0) { // CASE A: Acceptance rejection algorithm gs
b = 1.0 + 0.36788794412 * a; // Step 1
for (;;) {
p = b * nextDouble();
if (p <= 1.0) { // Step 2. Case gds <= 1
gds = Math.exp(Math.log(p) / a);
if (Math.log(nextDouble()) <= -gds)
return (gds / lambda);
} else { // Step 3. Case gds > 1
gds = -Math.log((b - p) / a);
if (Math.log(nextDouble()) <= ((a - 1.0) * Math.log(gds)))
return (gds / lambda);
}
}
} else { // CASE B: Acceptance complement algorithm gd (gaussian
// distribution, box muller transformation)
if (a != aa) { // Step 1. Preparations
aa = a;
ss = a - 0.5;
s = Math.sqrt(ss);
d = 5.656854249 - 12.0 * s;
}
// Step 2. Normal deviate
do {
v1 = 2.0 * nextDouble() - 1.0;
v2 = 2.0 * nextDouble() - 1.0;
v12 = v1 * v1 + v2 * v2;
} while (v12 > 1.0);
t = v1 * Math.sqrt(-2.0 * Math.log(v12) / v12);
x = s + 0.5 * t;
gds = x * x;
if (t >= 0.0)
return (gds / lambda); // Immediate acceptance
u = nextDouble(); // Step 3. Uniform random number
if (d * u <= t * t * t)
return (gds / lambda); // Squeeze acceptance
if (a != aaa) { // Step 4. Set-up for hat case
aaa = a;
r = 1.0 / a;
q0 = ((((((((q9 * r + q8) * r + q7) * r + q6) * r + q5) * r + q4)
* r + q3)
* r + q2)
* r + q1)
* r;
if (a > 3.686) {
if (a > 13.022) {
b = 1.77;
si = 0.75;
c = 0.1515 / s;
} else {
b = 1.654 + 0.0076 * ss;
si = 1.68 / s + 0.275;
c = 0.062 / s + 0.024;
}
} else {
b = 0.463 + s - 0.178 * ss;
si = 1.235;
c = 0.195 / s - 0.079 + 0.016 * s;
}
}
if (x > 0.0) { // Step 5. Calculation of q
v = t / (s + s); // Step 6.
if (Math.abs(v) > 0.25) {
q = q0 - s * t + 0.25 * t * t + (ss + ss)
* Math.log(1.0 + v);
} else {
q = q0
+ 0.5
* t
* t
* ((((((((a9 * v + a8) * v + a7) * v + a6) * v + a5)
* v + a4)
* v + a3)
* v + a2)
* v + a1) * v;
} // Step 7. Quotient acceptance
if (Math.log(1.0 - u) <= q)
return (gds / lambda);
}
for (;;) { // Step 8. Double exponential deviate t
do {
e = -Math.log(nextDouble());
u = nextDouble();
u = u + u - 1.0;
sign_u = (u > 0) ? 1.0 : -1.0;
t = b + (e * si) * sign_u;
} while (t <= -0.71874483771719); // Step 9. Rejection of t
v = t / (s + s); // Step 10. New q(t)
if (Math.abs(v) > 0.25) {
q = q0 - s * t + 0.25 * t * t + (ss + ss)
* Math.log(1.0 + v);
} else {
q = q0
+ 0.5
* t
* t
* ((((((((a9 * v + a8) * v + a7) * v + a6) * v + a5)
* v + a4)
* v + a3)
* v + a2)
* v + a1) * v;
}
if (q <= 0.0)
continue; // Step 11.
if (q > 0.5) {
w = Math.exp(q) - 1.0;
} else {
w = ((((((e7 * q + e6) * q + e5) * q + e4) * q + e3) * q + e2)
* q + e1)
* q;
} // Step 12. Hat acceptance
if (c * u * sign_u <= w * Math.exp(e - 0.5 * t * t)) {
x = s + 0.5 * t;
return (x * x / lambda);
}
}
}
}
}