package net.seninp.util; // StdRandom.java // Below is the syntax highlighted version of StdRandom.java from Standard Libraries. // Copyright © 2000–2011, Robert Sedgewick and Kevin Wayne. //Last updated: Tue Mar 25 20:35:06 EDT 2014. /************************************************************************* * Compilation: javac StdRandom.java * Execution: java StdRandom * Dependencies: StdOut.java * * A library of static methods to generate pseudo-random numbers from * different distributions (bernoulli, uniform, gaussian, discrete, * and exponential). Also includes a method for shuffling an array. * * * % java StdRandom 5 * seed = 1316600602069 * 59 16.81826 true 8.83954 0 * 32 91.32098 true 9.11026 0 * 35 10.11874 true 8.95396 3 * 92 32.88401 true 8.87089 0 * 72 92.55791 true 9.46241 0 * * % java StdRandom 5 * seed = 1316600616575 * 96 60.17070 true 8.72821 0 * 79 32.01607 true 8.58159 0 * 81 59.49065 true 9.10423 1 * 96 51.65818 true 9.02102 0 * 99 17.55771 true 8.99762 0 * * % java StdRandom 5 1316600616575 * seed = 1316600616575 * 96 60.17070 true 8.72821 0 * 79 32.01607 true 8.58159 0 * 81 59.49065 true 9.10423 1 * 96 51.65818 true 9.02102 0 * 99 17.55771 true 8.99762 0 * * * Remark * ------ * - Relies on randomness of nextDouble() method in java.util.Random * to generate pseudorandom numbers in [0, 1). * * - This library allows you to set and get the pseudorandom number seed. * * - See http://www.honeylocust.com/RngPack/ for an industrial * strength random number generator in Java. * *************************************************************************/ import java.util.Random; /** * <i>Standard random</i>. This class provides methods for generating random number from various * distributions. * <p> * For additional documentation, see <a href="http://introcs.cs.princeton.edu/22library">Section * 2.2</a> of <i>Introduction to Programming in Java: An Interdisciplinary Approach</i> by Robert * Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public final class StdRandom { private static Random random; // pseudo-random number generator private static long seed; // pseudo-random number generator seed // static initializer static { // this is how the seed was set in Java 1.4 seed = System.currentTimeMillis(); random = new Random(seed); } /** * Disable the constructor, do not instantiate. */ private StdRandom() { } /** * Sets the seed of the psedurandom number generator. * * @param s the seed value */ public static void setSeed(long s) { seed = s; random = new Random(seed); } /** * Returns the seed of the psedurandom number generator. * * @return the seed value. */ public static long getSeed() { return seed; } /** * Return real number uniformly in [0, 1). * * @return the uniformly sampled random value. */ public static double uniform() { return random.nextDouble(); } /** * Returns an integer uniformly between 0 (inclusive) and N (exclusive). * * @param N the upper bound. * @return the next uniformly sampled value. * @throws IllegalArgumentException if {@code N <= 0 } */ public static int uniform(int N) { if (N <= 0) throw new IllegalArgumentException("Parameter N must be positive"); return random.nextInt(N); } // ///////////////////////////////////////////////////////////////////////// // STATIC METHODS BELOW RELY ON JAVA.UTIL.RANDOM ONLY INDIRECTLY VIA // THE STATIC METHODS ABOVE. // ///////////////////////////////////////////////////////////////////////// /** * Returns an integer uniformly in [a, b). * * @param a the sampling interval's start. * @param b the sampling interval's end. * @return the next uniformly sampled value. * @throws IllegalArgumentException if {@code b <= a } * @throws IllegalArgumentException if {@code b - a >= Integer.MAX_VALUE } */ public static int uniform(int a, int b) { if (b <= a) throw new IllegalArgumentException("Invalid range"); if ((long) b - a >= Integer.MAX_VALUE) throw new IllegalArgumentException("Invalid range"); return a + uniform(b - a); } /** * Returns a real number uniformly in [a, b). * * @param a the sampling interval's start. * @param b the sampling interval's end. * * @return the next uniformly sampled value. * * @throws IllegalArgumentException unless {@code a < b } */ public static double uniform(double a, double b) { if (!(a < b)) throw new IllegalArgumentException("Invalid range"); return a + uniform() * (b - a); } /** * Returns a boolean, which is true with probability p, and false otherwise. * * @param p the probability. * @throws IllegalArgumentException unless {@code p >= 0.0 } and {@code p <= 1.0 } * @return the random value. */ public static boolean bernoulli(double p) { if (!(p >= 0.0 && p <= 1.0)) throw new IllegalArgumentException("Probability must be between 0.0 and 1.0"); return uniform() < p; } /** * Returns a boolean, which is true with probability .5, and false otherwise. * * @return the random value. */ public static boolean bernoulli() { return bernoulli(0.5); } /** * Returns a real number with a standard Gaussian distribution. * * @return the random value. */ public static double gaussian() { // use the polar form of the Box-Muller transform double r, x, y; do { x = uniform(-1.0, 1.0); y = uniform(-1.0, 1.0); r = x * x + y * y; } while (r >= 1 || r == 0); return x * Math.sqrt(-2 * Math.log(r) / r); // Remark: y * Math.sqrt(-2 * Math.log(r) / r) // is an independent random gaussian } /** * Returns a real number from a gaussian distribution with given mean and stddev * * @param mean the mean value to generate the distribution. * @param stddev the standard deviation value. * @return the random value. */ public static double gaussian(double mean, double stddev) { return mean + stddev * gaussian(); } /** * Returns an integer with a geometric distribution with mean 1/p. * * @param p the value to configure the distribution. * @throws IllegalArgumentException unless {@code p >= 0.0 } and {@code p <= 1.0 } * @return the random value. */ public static int geometric(double p) { if (!(p >= 0.0 && p <= 1.0)) throw new IllegalArgumentException("Probability must be between 0.0 and 1.0"); // using algorithm given by Knuth return (int) Math.ceil(Math.log(uniform()) / Math.log(1.0 - p)); } /** * Return an integer with a Poisson distribution with mean lambda. * * @param lambda the value to configure the distribution. * @throws IllegalArgumentException unless {@code lambda > 0.0 } and not infinite * @return the random value. */ public static int poisson(double lambda) { if (!(lambda > 0.0)) throw new IllegalArgumentException("Parameter lambda must be positive"); if (Double.isInfinite(lambda)) throw new IllegalArgumentException("Parameter lambda must not be infinite"); // using algorithm given by Knuth // see http://en.wikipedia.org/wiki/Poisson_distribution int k = 0; double p = 1.0; double L = Math.exp(-lambda); do { k++; p *= uniform(); } while (p >= L); return k - 1; } /** * Returns a real number with a Pareto distribution with parameter alpha. * * @param alpha the value to configure the distribution. * @throws IllegalArgumentException unless {@code alpha > 0.0 } * @return the random value. */ public static double pareto(double alpha) { if (!(alpha > 0.0)) throw new IllegalArgumentException("Shape parameter alpha must be positive"); return Math.pow(1 - uniform(), -1.0 / alpha) - 1.0; } /** * Returns a real number with a Cauchy distribution. * * @return the random value. */ public static double cauchy() { return Math.tan(Math.PI * (uniform() - 0.5)); } /** * Returns a number from a discrete distribution: i with probability a[i]. throws * IllegalArgumentException if sum of array entries is not (very nearly) equal to {@code 1.0 } * throws IllegalArgumentException unless {@code a[i] >= 0.0 } for each index {@code i } * * @param a the value to configure the distribution. * @return the random value. */ public static int discrete(double[] a) { double EPSILON = 1E-14; double sum = 0.0; for (int i = 0; i < a.length; i++) { if (!(a[i] >= 0.0)) throw new IllegalArgumentException("array entry " + i + " must be nonnegative: " + a[i]); sum = sum + a[i]; } if (sum > 1.0 + EPSILON || sum < 1.0 - EPSILON) throw new IllegalArgumentException( "sum of array entries does not approximately equal 1.0: " + sum); // the for loop may not return a value when both r is (nearly) 1.0 and when the // cumulative sum is less than 1.0 (as a result of floating-point roundoff error) while (true) { double r = uniform(); sum = 0.0; for (int i = 0; i < a.length; i++) { sum = sum + a[i]; if (sum > r) return i; } } } /** * Returns a real number from an exponential distribution with rate lambda. * * @param lambda the value to configure the distribution. * @throws IllegalArgumentException unless {@code lambda > 0.0 } * @return the random value. */ public static double exp(double lambda) { if (!(lambda > 0.0)) throw new IllegalArgumentException("Rate lambda must be positive"); return -Math.log(1 - uniform()) / lambda; } /** * Rearrange the elements of an array in random order. * * @param a the array to shuffle. */ public static void shuffle(Object[] a) { int N = a.length; for (int i = 0; i < N; i++) { int r = i + uniform(N - i); // between i and N-1 Object temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearrange the elements of a double array in random order. * * @param a the array to shuffle. */ public static void shuffle(double[] a) { int N = a.length; for (int i = 0; i < N; i++) { int r = i + uniform(N - i); // between i and N-1 double temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearrange the elements of an int array in random order. * * @param a the array to shuffle. */ public static void shuffle(int[] a) { int N = a.length; for (int i = 0; i < N; i++) { int r = i + uniform(N - i); // between i and N-1 int temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearrange the elements of the subarray a[lo..hi] in random order. * * @param a the array to shuffle. * @param hi the upper bound. * @param lo the lower bound. */ public static void shuffle(Object[] a, int lo, int hi) { if (lo < 0 || lo > hi || hi >= a.length) { throw new IndexOutOfBoundsException("Illegal subarray range"); } for (int i = lo; i <= hi; i++) { int r = i + uniform(hi - i + 1); // between i and hi Object temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearrange the elements of the subarray a[lo..hi] in random order. * * @param a the array to shuffle. * @param hi the upper bound. * @param lo the lower bound. */ public static void shuffle(double[] a, int lo, int hi) { if (lo < 0 || lo > hi || hi >= a.length) { throw new IndexOutOfBoundsException("Illegal subarray range"); } for (int i = lo; i <= hi; i++) { int r = i + uniform(hi - i + 1); // between i and hi double temp = a[i]; a[i] = a[r]; a[r] = temp; } } /** * Rearrange the elements of the subarray a[lo..hi] in random order. * * @param a the array to shuffle. * @param hi the upper bound. * @param lo the lower bound. */ public static void shuffle(int[] a, int lo, int hi) { if (lo < 0 || lo > hi || hi >= a.length) { throw new IndexOutOfBoundsException("Illegal subarray range"); } for (int i = lo; i <= hi; i++) { int r = i + uniform(hi - i + 1); // between i and hi int temp = a[i]; a[i] = a[r]; a[r] = temp; } } // /** // * Unit test. // */ // public static void main(String[] args) { // int N = Integer.parseInt(args[0]); // if (args.length == 2) // StdRandom.setSeed(Long.parseLong(args[1])); // double[] t = { .5, .3, .1, .1 }; // // StdOut.println("seed = " + StdRandom.getSeed()); // for (int i = 0; i < N; i++) { // StdOut.printf("%2d ", uniform(100)); // StdOut.printf("%8.5f ", uniform(10.0, 99.0)); // StdOut.printf("%5b ", bernoulli(.5)); // StdOut.printf("%7.5f ", gaussian(9.0, .2)); // StdOut.printf("%2d ", discrete(t)); // StdOut.println(); // } // // String[] a = "A B C D E F G".split(" "); // for (String s : a) // StdOut.print(s + " "); // StdOut.println(); // } }