/* * Written by Josh Bloch of Google Inc. and released to the public domain, * as explained at http://creativecommons.org/licenses/publicdomain. */ package com.rincliu.library.common.persistence.afinal.core; // BEGIN android-note // removed link to collections framework docs // END android-note import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.Serializable; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.NoSuchElementException; import java.util.Stack; /** * Resizable-array implementation of the {@link Deque} interface. Array deques * have no capacity restrictions; they grow as necessary to support usage. * They are not thread-safe; in the absence of external synchronization, they * do not support concurrent access by multiple threads. Null elements are * prohibited. This class is likely to be faster than {@link Stack} when used * as a stack, and faster than {@link LinkedList} when used as a queue. * <p> * Most <tt>ArrayDeque</tt> operations run in amortized constant time. * Exceptions include {@link #remove(Object) remove}, * {@link #removeFirstOccurrence removeFirstOccurrence}, * {@link #removeLastOccurrence removeLastOccurrence}, {@link #contains * contains}, {@link #iterator iterator.remove()}, and the bulk operations, * all of which run in linear time. * <p> * The iterators returned by this class's <tt>iterator</tt> method are * <i>fail-fast</i>: If the deque is modified at any time after the iterator * is created, in any way except through the iterator's own <tt>remove</tt> * method, the iterator will generally throw a * {@link ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * <p> * Note that the fail-fast behavior of an iterator cannot be guaranteed as it * is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * <p> * This class and its iterator implement all of the <em>optional</em> methods * of the {@link Collection} and {@link Iterator} interfaces. * * @author Josh Bloch and Doug Lea * @since 1.6 * @param <E> the type of elements held in this collection */ public class ArrayDeque<E> extends AbstractCollection<E> implements Deque<E>, Cloneable, Serializable { /** * The array in which the elements of the deque are stored. The capacity * of the deque is the length of this array, which is always a power of * two. The array is never allowed to become full, except transiently * within an addX method where it is resized (see doubleCapacity) * immediately upon becoming full, thus avoiding head and tail wrapping * around to equal each other. We also guarantee that all array cells not * holding deque elements are always null. */ private transient E[] elements; /** * The index of the element at the head of the deque (which is the element * that would be removed by remove() or pop()); or an arbitrary number * equal to tail if the deque is empty. */ private transient int head; /** * The index at which the next element would be added to the tail of the * deque (via addLast(E), add(E), or push(E)). */ private transient int tail; /** * The minimum capacity that we'll use for a newly created deque. Must be * a power of 2. */ private static final int MIN_INITIAL_CAPACITY = 8; // ****** Array allocation and resizing utilities ****** /** * Allocate empty array to hold the given number of elements. * * @param numElements the number of elements to hold */ @SuppressWarnings("unchecked") private void allocateElements(int numElements) { int initialCapacity = MIN_INITIAL_CAPACITY; // Find the best power of two to hold elements. // Tests "<=" because arrays aren't kept full. if (numElements >= initialCapacity) { initialCapacity = numElements; initialCapacity |= (initialCapacity >>> 1); initialCapacity |= (initialCapacity >>> 2); initialCapacity |= (initialCapacity >>> 4); initialCapacity |= (initialCapacity >>> 8); initialCapacity |= (initialCapacity >>> 16); initialCapacity++; if (initialCapacity < 0) // Too many elements, must back off initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements } elements = (E[]) new Object[initialCapacity]; } /** * Double the capacity of this deque. Call only when full, i.e., when head * and tail have wrapped around to become equal. */ @SuppressWarnings("unchecked") private void doubleCapacity() { assert head == tail; int p = head; int n = elements.length; int r = n - p; // number of elements to the right of p int newCapacity = n << 1; if (newCapacity < 0) throw new IllegalStateException("Sorry, deque too big"); Object[] a = new Object[newCapacity]; System.arraycopy(elements, p, a, 0, r); System.arraycopy(elements, 0, a, r, p); elements = (E[]) a; head = 0; tail = n; } /** * Copies the elements from our element array into the specified array, in * order (from first to last element in the deque). It is assumed that the * array is large enough to hold all elements in the deque. * * @return its argument */ private <T> T[] copyElements(T[] a) { if (head < tail) { System.arraycopy(elements, head, a, 0, size()); } else if (head > tail) { int headPortionLen = elements.length - head; System.arraycopy(elements, head, a, 0, headPortionLen); System.arraycopy(elements, 0, a, headPortionLen, tail); } return a; } /** * Constructs an empty array deque with an initial capacity sufficient to * hold 16 elements. */ @SuppressWarnings("unchecked") public ArrayDeque() { elements = (E[]) new Object[16]; } /** * Constructs an empty array deque with an initial capacity sufficient to * hold the specified number of elements. * * @param numElements lower bound on initial capacity of the deque */ public ArrayDeque(int numElements) { allocateElements(numElements); } /** * Constructs a deque containing the elements of the specified collection, * in the order they are returned by the collection's iterator. (The first * element returned by the collection's iterator becomes the first * element, or <i>front</i> of the deque.) * * @param c the collection whose elements are to be placed into the deque * @throws NullPointerException if the specified collection is null */ public ArrayDeque(Collection<? extends E> c) { allocateElements(c.size()); addAll(c); } // The main insertion and extraction methods are addFirst, // addLast, pollFirst, pollLast. The other methods are defined in // terms of these. /** * Inserts the specified element at the front of this deque. * * @param e the element to add * @throws NullPointerException if the specified element is null */ @Override public void addFirst(E e) { if (e == null) throw new NullPointerException(); elements[head = (head - 1) & (elements.length - 1)] = e; if (head == tail) doubleCapacity(); } /** * Inserts the specified element at the end of this deque. * <p> * This method is equivalent to {@link #add}. * * @param e the element to add * @throws NullPointerException if the specified element is null */ @Override public void addLast(E e) { if (e == null) throw new NullPointerException(); elements[tail] = e; if ((tail = (tail + 1) & (elements.length - 1)) == head) doubleCapacity(); } /** * Inserts the specified element at the front of this deque. * * @param e the element to add * @return <tt>true</tt> (as specified by {@link Deque#offerFirst}) * @throws NullPointerException if the specified element is null */ @Override public boolean offerFirst(E e) { addFirst(e); return true; } /** * Inserts the specified element at the end of this deque. * * @param e the element to add * @return <tt>true</tt> (as specified by {@link Deque#offerLast}) * @throws NullPointerException if the specified element is null */ @Override public boolean offerLast(E e) { addLast(e); return true; } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E removeFirst() { E x = pollFirst(); if (x == null) throw new NoSuchElementException(); return x; } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E removeLast() { E x = pollLast(); if (x == null) throw new NoSuchElementException(); return x; } @Override public E pollFirst() { int h = head; E result = elements[h]; // Element is null if deque empty if (result == null) return null; elements[h] = null; // Must null out slot head = (h + 1) & (elements.length - 1); return result; } @Override public E pollLast() { int t = (tail - 1) & (elements.length - 1); E result = elements[t]; if (result == null) return null; elements[t] = null; tail = t; return result; } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E getFirst() { E x = elements[head]; if (x == null) throw new NoSuchElementException(); return x; } /** * @throws NoSuchElementException {@inheritDoc} */ @Override public E getLast() { E x = elements[(tail - 1) & (elements.length - 1)]; if (x == null) throw new NoSuchElementException(); return x; } @Override public E peekFirst() { return elements[head]; // elements[head] is null if deque empty } @Override public E peekLast() { return elements[(tail - 1) & (elements.length - 1)]; } /** * Removes the first occurrence of the specified element in this deque * (when traversing the deque from head to tail). If the deque does not * contain the element, it is unchanged. More formally, removes the first * element <tt>e</tt> such that <tt>o.equals(e)</tt> (if such an element * exists). Returns <tt>true</tt> if this deque contained the specified * element (or equivalently, if this deque changed as a result of the * call). * * @param o element to be removed from this deque, if present * @return <tt>true</tt> if the deque contained the specified element */ @Override public boolean removeFirstOccurrence(Object o) { if (o == null) return false; int mask = elements.length - 1; int i = head; E x; while ((x = elements[i]) != null) { if (o.equals(x)) { delete(i); return true; } i = (i + 1) & mask; } return false; } /** * Removes the last occurrence of the specified element in this deque * (when traversing the deque from head to tail). If the deque does not * contain the element, it is unchanged. More formally, removes the last * element <tt>e</tt> such that <tt>o.equals(e)</tt> (if such an element * exists). Returns <tt>true</tt> if this deque contained the specified * element (or equivalently, if this deque changed as a result of the * call). * * @param o element to be removed from this deque, if present * @return <tt>true</tt> if the deque contained the specified element */ @Override public boolean removeLastOccurrence(Object o) { if (o == null) return false; int mask = elements.length - 1; int i = (tail - 1) & mask; E x; while ((x = elements[i]) != null) { if (o.equals(x)) { delete(i); return true; } i = (i - 1) & mask; } return false; } // *** Queue methods *** /** * Inserts the specified element at the end of this deque. * <p> * This method is equivalent to {@link #addLast}. * * @param e the element to add * @return <tt>true</tt> (as specified by {@link Collection#add}) * @throws NullPointerException if the specified element is null */ @Override public boolean add(E e) { addLast(e); return true; } /** * Inserts the specified element at the end of this deque. * <p> * This method is equivalent to {@link #offerLast}. * * @param e the element to add * @return <tt>true</tt> (as specified by {@link Queue#offer}) * @throws NullPointerException if the specified element is null */ @Override public boolean offer(E e) { return offerLast(e); } /** * Retrieves and removes the head of the queue represented by this deque. * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. * <p> * This method is equivalent to {@link #removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException {@inheritDoc} */ @Override public E remove() { return removeFirst(); } /** * Retrieves and removes the head of the queue represented by this deque * (in other words, the first element of this deque), or returns * <tt>null</tt> if this deque is empty. * <p> * This method is equivalent to {@link #pollFirst}. * * @return the head of the queue represented by this deque, or * <tt>null</tt> if this deque is empty */ @Override public E poll() { return pollFirst(); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in that it * throws an exception if this deque is empty. * <p> * This method is equivalent to {@link #getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException {@inheritDoc} */ @Override public E element() { return getFirst(); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque, or returns <tt>null</tt> if this deque is empty. * <p> * This method is equivalent to {@link #peekFirst}. * * @return the head of the queue represented by this deque, or * <tt>null</tt> if this deque is empty */ @Override public E peek() { return peekFirst(); } // *** Stack methods *** /** * Pushes an element onto the stack represented by this deque. In other * words, inserts the element at the front of this deque. * <p> * This method is equivalent to {@link #addFirst}. * * @param e the element to push * @throws NullPointerException if the specified element is null */ @Override public void push(E e) { addFirst(e); } /** * Pops an element from the stack represented by this deque. In other * words, removes and returns the first element of this deque. * <p> * This method is equivalent to {@link #removeFirst()}. * * @return the element at the front of this deque (which is the top of the * stack represented by this deque) * @throws NoSuchElementException {@inheritDoc} */ @Override public E pop() { return removeFirst(); } private void checkInvariants() { assert elements[tail] == null; assert head == tail ? elements[head] == null : (elements[head] != null && elements[(tail - 1) & (elements.length - 1)] != null); assert elements[(head - 1) & (elements.length - 1)] == null; } /** * Removes the element at the specified position in the elements array, * adjusting head and tail as necessary. This can result in motion of * elements backwards or forwards in the array. * <p> * This method is called delete rather than remove to emphasize that its * semantics differ from those of {@link List#remove(int)}. * * @return true if elements moved backwards */ private boolean delete(int i) { checkInvariants(); final E[] elements = this.elements; final int mask = elements.length - 1; final int h = head; final int t = tail; final int front = (i - h) & mask; final int back = (t - i) & mask; // Invariant: head <= i < tail mod circularity if (front >= ((t - h) & mask)) throw new ConcurrentModificationException(); // Optimize for least element motion if (front < back) { if (h <= i) { System.arraycopy(elements, h, elements, h + 1, front); } else { // Wrap around System.arraycopy(elements, 0, elements, 1, i); elements[0] = elements[mask]; System.arraycopy(elements, h, elements, h + 1, mask - h); } elements[h] = null; head = (h + 1) & mask; return false; } else { if (i < t) { // Copy the null tail as well System.arraycopy(elements, i + 1, elements, i, back); tail = t - 1; } else { // Wrap around System.arraycopy(elements, i + 1, elements, i, mask - i); elements[mask] = elements[0]; System.arraycopy(elements, 1, elements, 0, t); tail = (t - 1) & mask; } return true; } } // *** Collection Methods *** /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ @Override public int size() { return (tail - head) & (elements.length - 1); } /** * Returns <tt>true</tt> if this deque contains no elements. * * @return <tt>true</tt> if this deque contains no elements */ @Override public boolean isEmpty() { return head == tail; } /** * Returns an iterator over the elements in this deque. The elements will * be ordered from first (head) to last (tail). This is the same order * that elements would be dequeued (via successive calls to * {@link #remove} or popped (via successive calls to {@link #pop}). * * @return an iterator over the elements in this deque */ @Override public Iterator<E> iterator() { return new DeqIterator(); } @Override public Iterator<E> descendingIterator() { return new DescendingIterator(); } private class DeqIterator implements Iterator<E> { /** * Index of element to be returned by subsequent call to next. */ private int cursor = head; /** * Tail recorded at construction (also in remove), to stop iterator * and also to check for comodification. */ private int fence = tail; /** * Index of element returned by most recent call to next. Reset to -1 * if element is deleted by a call to remove. */ private int lastRet = -1; @Override public boolean hasNext() { return cursor != fence; } @Override public E next() { if (cursor == fence) throw new NoSuchElementException(); E result = elements[cursor]; // This check doesn't catch all possible comodifications, // but does catch the ones that corrupt traversal if (tail != fence || result == null) throw new ConcurrentModificationException(); lastRet = cursor; cursor = (cursor + 1) & (elements.length - 1); return result; } @Override public void remove() { if (lastRet < 0) throw new IllegalStateException(); if (delete(lastRet)) { // if left-shifted, undo increment in // next() cursor = (cursor - 1) & (elements.length - 1); fence = tail; } lastRet = -1; } } private class DescendingIterator implements Iterator<E> { /* * This class is nearly a mirror-image of DeqIterator, using tail * instead of head for initial cursor, and head instead of tail for * fence. */ private int cursor = tail; private int fence = head; private int lastRet = -1; @Override public boolean hasNext() { return cursor != fence; } @Override public E next() { if (cursor == fence) throw new NoSuchElementException(); cursor = (cursor - 1) & (elements.length - 1); E result = elements[cursor]; if (head != fence || result == null) throw new ConcurrentModificationException(); lastRet = cursor; return result; } @Override public void remove() { if (lastRet < 0) throw new IllegalStateException(); if (!delete(lastRet)) { cursor = (cursor + 1) & (elements.length - 1); fence = head; } lastRet = -1; } } /** * Returns <tt>true</tt> if this deque contains the specified element. * More formally, returns <tt>true</tt> if and only if this deque contains * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>. * * @param o object to be checked for containment in this deque * @return <tt>true</tt> if this deque contains the specified element */ @Override public boolean contains(Object o) { if (o == null) return false; int mask = elements.length - 1; int i = head; E x; while ((x = elements[i]) != null) { if (o.equals(x)) return true; i = (i + 1) & mask; } return false; } /** * Removes a single instance of the specified element from this deque. If * the deque does not contain the element, it is unchanged. More formally, * removes the first element <tt>e</tt> such that <tt>o.equals(e)</tt> (if * such an element exists). Returns <tt>true</tt> if this deque contained * the specified element (or equivalently, if this deque changed as a * result of the call). * <p> * This method is equivalent to {@link #removeFirstOccurrence}. * * @param o element to be removed from this deque, if present * @return <tt>true</tt> if this deque contained the specified element */ @Override public boolean remove(Object o) { return removeFirstOccurrence(o); } /** * Removes all of the elements from this deque. The deque will be empty * after this call returns. */ @Override public void clear() { int h = head; int t = tail; if (h != t) { // clear all cells head = tail = 0; int i = h; int mask = elements.length - 1; do { elements[i] = null; i = (i + 1) & mask; } while (i != t); } } /** * Returns an array containing all of the elements in this deque in proper * sequence (from first to last element). * <p> * The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate a * new array). The caller is thus free to modify the returned array. * <p> * This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ @Override public Object[] toArray() { return copyElements(new Object[size()]); } /** * Returns an array containing all of the elements in this deque in proper * sequence (from first to last element); the runtime type of the returned * array is that of the specified array. If the deque fits in the * specified array, it is returned therein. Otherwise, a new array is * allocated with the runtime type of the specified array and the size of * this deque. * <p> * If this deque fits in the specified array with room to spare (i.e., the * array has more elements than this deque), the element in the array * immediately following the end of the deque is set to <tt>null</tt>. * <p> * Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * <p> * Suppose <tt>x</tt> is a deque known to contain only strings. The * following code can be used to dump the deque into a newly allocated * array of <tt>String</tt>: * * <pre> * String[] y = x.toArray(new String[0]); * </pre> * * Note that <tt>toArray(new Object[0])</tt> is identical in function to * <tt>toArray()</tt>. * * @param a the array into which the elements of the deque are to be * stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ @Override @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { int size = size(); if (a.length < size) a = (T[]) java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), size); copyElements(a); if (a.length > size) a[size] = null; return a; } // *** Object methods *** /** * Returns a copy of this deque. * * @return a copy of this deque */ @Override public ArrayDeque<E> clone() { try { @SuppressWarnings("unchecked") ArrayDeque<E> result = (ArrayDeque<E>) super.clone(); result.elements = Arrays.copyOf(elements, elements.length); return result; } catch (CloneNotSupportedException e) { throw new AssertionError(); } } /** * Appease the serialization gods. */ private static final long serialVersionUID = 2340985798034038923L; /** * Serialize this deque. * * @serialData The current size (<tt>int</tt>) of the deque, followed by * all of its elements (each an object reference) in * first-to-last order. */ private void writeObject(ObjectOutputStream s) throws IOException { s.defaultWriteObject(); // Write out size s.writeInt(size()); // Write out elements in order. int mask = elements.length - 1; for (int i = head; i != tail; i = (i + 1) & mask) s.writeObject(elements[i]); } /** * Deserialize this deque. */ @SuppressWarnings("unchecked") private void readObject(ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Read in size and allocate array int size = s.readInt(); allocateElements(size); head = 0; tail = size; // Read in all elements in the proper order. for (int i = 0; i < size; i++) elements[i] = (E) s.readObject(); } }