/* Copyright (c) 2011 Danish Maritime Authority. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // http://code.google.com/p/protobuf/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package net.maritimecloud.util; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.UnsupportedEncodingException; import java.nio.ByteBuffer; import java.util.ArrayList; import java.util.Arrays; import java.util.Iterator; import java.util.List; import java.util.NoSuchElementException; import java.util.Stack; /** * Class to represent {@code Binarys} formed by concatenation of other Binarys, without copying the data in the pieces. * The concatenation is represented as a tree whose leaf nodes are each a {@link LiteralBinary}. * * <p> * Most of the operation here is inspired by the now-famous paper <a * href="http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue12/spe986.pdf"> BAP95 </a> Ropes: an * Alternative to Strings hans-j. boehm, russ atkinson and michael plass * * <p> * Fundamentally the Rope algorithm represents the collection of pieces as a binary tree. BAP95 uses a Fibonacci bound * relating depth to a minimum sequence length, sequences that are too short relative to their depth cause a tree * rebalance. More precisely, a tree of depth d is "balanced" in the terminology of BAP95 if its length is at least * F(d+2), where F(n) is the n-the Fibonacci number. Thus for depths 0, 1, 2, 3, 4, 5,... we have minimum lengths 1, 2, * 3, 5, 8, 13,... * * @author carlanton@google.com (Carl Haverl) */ class RopeBinary extends Binary { /** * BAP95. Let Fn be the nth Fibonacci number. A {@link RopeBinary} of depth n is "balanced", i.e flat enough, if its * length is at least Fn+2, e.g. a "balanced" {@link RopeBinary} of depth 1 must have length at least 2, of depth 4 * must have length >= 8, etc. * * <p> * There's nothing special about using the Fibonacci numbers for this, but they are a reasonable sequence for * encapsulating the idea that we are OK with longer strings being encoded in deeper binary trees. * * <p> * For 32-bit integers, this array has length 46. */ static final int[] MIN_LENGTH_BY_DEPTH; static { // Dynamically generate the list of Fibonacci numbers the first time this // class is accessed. List<Integer> numbers = new ArrayList<>(); // we skip the first Fibonacci number (1). So instead of: 1 1 2 3 5 8 ... // we have: 1 2 3 5 8 ... int f1 = 1; int f2 = 1; // get all the values until we roll over. while (f2 > 0) { numbers.add(f2); int temp = f1 + f2; f1 = f2; f2 = temp; } // we include this here so that we can index this array to [x + 1] in the // loops below. numbers.add(Integer.MAX_VALUE); MIN_LENGTH_BY_DEPTH = new int[numbers.size()]; for (int i = 0; i < MIN_LENGTH_BY_DEPTH.length; i++) { // unbox all the values MIN_LENGTH_BY_DEPTH[i] = numbers.get(i); } } private final int totalLength; final Binary left; final Binary right; private final int leftLength; private final int treeDepth; /** * Create a new RopeBinary, which can be thought of as a new tree node, by recording references to the two given * strings. * * @param left * string on the left of this node, should have {@code size() > * 0} * @param right * string on the right of this node, should have {@code size() > * 0} */ RopeBinary(Binary left, Binary right) { this.left = left; this.right = right; leftLength = left.size(); totalLength = leftLength + right.size(); treeDepth = Math.max(left.getTreeDepth(), right.getTreeDepth()) + 1; } /** * Concatenate the given strings while performing various optimizations to slow the growth rate of tree depth and * tree node count. The result is either a {@link LiteralBinary} or a {@link RopeBinary} depending on which * optimizations, if any, were applied. * * <p> * Small pieces of length less than {@link Binary#CONCATENATE_BY_COPY_SIZE} may be copied by value here, as in * BAP95. Large pieces are referenced without copy. * * @param left * string on the left * @param right * string on the right * @return concatenation representing the same sequence as the given strings */ static Binary concatenate(Binary left, Binary right) { Binary result; RopeBinary leftRope = left instanceof RopeBinary ? (RopeBinary) left : null; if (right.size() == 0) { result = left; } else if (left.size() == 0) { result = right; } else { int newLength = left.size() + right.size(); if (newLength < Binary.CONCATENATE_BY_COPY_SIZE) { // Optimization from BAP95: For short (leaves in paper, but just short // here) total length, do a copy of data to a new leaf. result = concatenateBytes(left, right); } else if (leftRope != null && leftRope.right.size() + right.size() < CONCATENATE_BY_COPY_SIZE) { // Optimization from BAP95: As an optimization of the case where the // Binary is constructed by repeated concatenate, recognize the case // where a short string is concatenated to a left-hand node whose // right-hand branch is short. In the paper this applies to leaves, but // we just look at the length here. This has the advantage of shedding // references to unneeded data when substrings have been taken. // // When we recognize this case, we do a copy of the data and create a // new parent node so that the depth of the result is the same as the // given left tree. Binary newRight = concatenateBytes(leftRope.right, right); result = new RopeBinary(leftRope.left, newRight); } else if (leftRope != null && leftRope.left.getTreeDepth() > leftRope.right.getTreeDepth() && leftRope.getTreeDepth() > right.getTreeDepth()) { // Typically for concatenate-built strings the left-side is deeper than // the right. This is our final attempt to concatenate without // increasing the tree depth. We'll redo the the node on the RHS. This // is yet another optimization for building the string by repeatedly // concatenating on the right. Binary newRight = new RopeBinary(leftRope.right, right); result = new RopeBinary(leftRope.left, newRight); } else { // Fine, we'll add a node and increase the tree depth--unless we // rebalance ;^) int newDepth = Math.max(left.getTreeDepth(), right.getTreeDepth()) + 1; if (newLength >= MIN_LENGTH_BY_DEPTH[newDepth]) { // The tree is shallow enough, so don't rebalance result = new RopeBinary(left, right); } else { result = new Balancer().balance(left, right); } } } return result; } /** * Concatenates two strings by copying data values. This is called in a few cases in order to reduce the growth of * the number of tree nodes. * * @param left * string on the left * @param right * string on the right * @return string formed by copying data bytes */ private static LiteralBinary concatenateBytes(Binary left, Binary right) { int leftSize = left.size(); int rightSize = right.size(); byte[] bytes = new byte[leftSize + rightSize]; left.copyTo(bytes, 0, 0, leftSize); right.copyTo(bytes, 0, leftSize, rightSize); return new LiteralBinary(bytes); // Constructor wraps bytes } /** * Create a new RopeBinary for testing only while bypassing all the defenses of {@link #concatenate(Binary, Binary)} * . This allows testing trees of specific structure. We are also able to insert empty leaves, though these are * dis-allowed, so that we can make sure the implementation can withstand their presence. * * @param left * string on the left of this node * @param right * string on the right of this node * @return an unsafe instance for testing only */ static RopeBinary newInstanceForTest(Binary left, Binary right) { return new RopeBinary(left, right); } /** * Gets the byte at the given index. Throws {@link ArrayIndexOutOfBoundsException} for backwards-compatibility * reasons although it would more properly be {@link IndexOutOfBoundsException}. * * @param index * index of byte * @return the value * @throws ArrayIndexOutOfBoundsException * {@code index} is < 0 or >= size */ @Override public byte byteAt(int index) { if (index < 0) { throw new ArrayIndexOutOfBoundsException("Index < 0: " + index); } if (index > totalLength) { throw new ArrayIndexOutOfBoundsException("Index > length: " + index + ", " + totalLength); } byte result; // Find the relevant piece by recursive descent if (index < leftLength) { result = left.byteAt(index); } else { result = right.byteAt(index - leftLength); } return result; } @Override public int size() { return totalLength; } // ================================================================= // Pieces @Override protected int getTreeDepth() { return treeDepth; } /** * Determines if the tree is balanced according to BAP95, which means the tree is flat-enough with respect to the * bounds. Note that this definition of balanced is one where sub-trees of balanced trees are not necessarily * balanced. * * @return true if the tree is balanced */ @Override protected boolean isBalanced() { return totalLength >= MIN_LENGTH_BY_DEPTH[treeDepth]; } /** * Takes a substring of this one. This involves recursive descent along the left and right edges of the substring, * and referencing any wholly contained segments in between. Any leaf nodes entirely uninvolved in the substring * will not be referenced by the substring. * * <p> * Substrings of {@code length < 2} should result in at most a single recursive call chain, terminating at a leaf * node. Thus the result will be a {@link LiteralBinary}. {@link #RopeBinary(Binary, Binary)}. * * @param beginIndex * start at this index * @param endIndex * the last character is the one before this index * @return substring leaf node or tree */ @Override public Binary substring(int beginIndex, int endIndex) { if (beginIndex < 0) { throw new IndexOutOfBoundsException("Beginning index: " + beginIndex + " < 0"); } if (endIndex > totalLength) { throw new IndexOutOfBoundsException("End index: " + endIndex + " > " + totalLength); } int substringLength = endIndex - beginIndex; if (substringLength < 0) { throw new IndexOutOfBoundsException("Beginning index larger than ending index: " + beginIndex + ", " + endIndex); } Binary result; if (substringLength == 0) { // Empty substring result = Binary.EMPTY; } else if (substringLength == totalLength) { // The whole string result = this; } else { // Proper substring if (endIndex <= leftLength) { // Substring on the left result = left.substring(beginIndex, endIndex); } else if (beginIndex >= leftLength) { // Substring on the right result = right.substring(beginIndex - leftLength, endIndex - leftLength); } else { // Split substring Binary leftSub = left.substring(beginIndex); Binary rightSub = right.substring(0, endIndex - leftLength); // Intentionally not rebalancing, since in many cases these two // substrings will already be less deep than the top-level // RopeBinary we're taking a substring of. result = new RopeBinary(leftSub, rightSub); } } return result; } // ================================================================= // Binary -> byte[] @Override protected void copyToInternal(byte[] target, int sourceOffset, int targetOffset, int numberToCopy) { if (sourceOffset + numberToCopy <= leftLength) { left.copyToInternal(target, sourceOffset, targetOffset, numberToCopy); } else if (sourceOffset >= leftLength) { right.copyToInternal(target, sourceOffset - leftLength, targetOffset, numberToCopy); } else { int leftLength = this.leftLength - sourceOffset; left.copyToInternal(target, sourceOffset, targetOffset, leftLength); right.copyToInternal(target, 0, targetOffset + leftLength, numberToCopy - leftLength); } } @Override public void copyTo(ByteBuffer target) { left.copyTo(target); right.copyTo(target); } @Override public ByteBuffer asReadOnlyByteBuffer() { ByteBuffer byteBuffer = ByteBuffer.wrap(toByteArray()); return byteBuffer.asReadOnlyBuffer(); } @Override public List<ByteBuffer> asReadOnlyByteBufferList() { // Walk through the list of LiteralBinary's that make up this // rope, and add each one as a read-only ByteBuffer. List<ByteBuffer> result = new ArrayList<>(); PieceIterator pieces = new PieceIterator(this); while (pieces.hasNext()) { LiteralBinary byteString = pieces.next(); result.add(byteString.asReadOnlyByteBuffer()); } return result; } @Override public void writeTo(OutputStream outputStream) throws IOException { left.writeTo(outputStream); right.writeTo(outputStream); } @Override public String toString(String charsetName) throws UnsupportedEncodingException { return new String(toByteArray(), charsetName); } // ================================================================= // UTF-8 decoding @Override public boolean isValidUtf8() { int leftPartial = left.partialIsValidUtf8(Utf8.COMPLETE, 0, leftLength); int state = right.partialIsValidUtf8(leftPartial, 0, right.size()); return state == Utf8.COMPLETE; } @Override protected int partialIsValidUtf8(int state, int offset, int length) { int toIndex = offset + length; if (toIndex <= leftLength) { return left.partialIsValidUtf8(state, offset, length); } else if (offset >= leftLength) { return right.partialIsValidUtf8(state, offset - leftLength, length); } else { int leftLength = this.leftLength - offset; int leftPartial = left.partialIsValidUtf8(state, offset, leftLength); return right.partialIsValidUtf8(leftPartial, 0, length - leftLength); } } // ================================================================= // equals() and hashCode() @Override public boolean equals(Object other) { if (other == this) { return true; } if (!(other instanceof Binary)) { return false; } Binary otherBinary = (Binary) other; if (totalLength != otherBinary.size()) { return false; } if (totalLength == 0) { return true; } // You don't really want to be calling equals on long strings, but since // we cache the hashCode, we effectively cache inequality. We use the cached // hashCode if it's already computed. It's arguable we should compute the // hashCode here, and if we're going to be testing a bunch of byteStrings, // it might even make sense. if (hash != 0) { int cachedOtherHash = otherBinary.peekCachedHashCode(); if (cachedOtherHash != 0 && hash != cachedOtherHash) { return false; } } return equalsFragments(otherBinary); } /** * Determines if this string is equal to another of the same length by iterating over the leaf nodes. On each step * of the iteration, the overlapping segments of the leaves are compared. * * @param other * string of the same length as this one * @return true if the values of this string equals the value of the given one */ private boolean equalsFragments(Binary other) { int thisOffset = 0; Iterator<LiteralBinary> thisIter = new PieceIterator(this); LiteralBinary thisString = thisIter.next(); int thatOffset = 0; Iterator<LiteralBinary> thatIter = new PieceIterator(other); LiteralBinary thatString = thatIter.next(); int pos = 0; while (true) { int thisRemaining = thisString.size() - thisOffset; int thatRemaining = thatString.size() - thatOffset; int bytesToCompare = Math.min(thisRemaining, thatRemaining); // At least one of the offsets will be zero boolean stillEqual = thisOffset == 0 ? thisString.equalsRange(thatString, thatOffset, bytesToCompare) : thatString.equalsRange(thisString, thisOffset, bytesToCompare); if (!stillEqual) { return false; } pos += bytesToCompare; if (pos >= totalLength) { if (pos == totalLength) { return true; } throw new IllegalStateException(); } // We always get to the end of at least one of the pieces if (bytesToCompare == thisRemaining) { // If reached end of this thisOffset = 0; thisString = thisIter.next(); } else { thisOffset += bytesToCompare; } if (bytesToCompare == thatRemaining) { // If reached end of that thatOffset = 0; thatString = thatIter.next(); } else { thatOffset += bytesToCompare; } } } /** * Cached hash value. Intentionally accessed via a data race, which is safe because of the Java Memory Model's * "no out-of-thin-air values" guarantees for ints. */ private int hash; @Override public int hashCode() { int h = hash; if (h == 0) { h = totalLength; h = partialHash(h, 0, totalLength); if (h == 0) { h = 1; } hash = h; } return h; } @Override protected int peekCachedHashCode() { return hash; } @Override protected int partialHash(int h, int offset, int length) { int toIndex = offset + length; if (toIndex <= leftLength) { return left.partialHash(h, offset, length); } else if (offset >= leftLength) { return right.partialHash(h, offset - leftLength, length); } else { int leftLength = this.leftLength - offset; int leftPartial = left.partialHash(h, offset, leftLength); return right.partialHash(leftPartial, 0, length - leftLength); } } // ================================================================= // Input stream // @Override // public CodedInputStream newCodedInput() { // return CodedInputStream.newInstance(new RopeInputStream()); // } @Override public InputStream newInput() { return new RopeInputStream(); } // ================================================================= // ByteIterator @Override public ByteIterator iterator() { return new RopeByteIterator(); } /** * This class implements the balancing algorithm of BAP95. In the paper the authors use an array to keep track of * pieces, while here we use a stack. The tree is balanced by traversing subtrees in left to right order, and the * stack always contains the part of the string we've traversed so far. * * <p> * One surprising aspect of the algorithm is the result of balancing is not necessarily balanced, though it is * nearly balanced. For details, see BAP95. */ static class Balancer { // Stack containing the part of the string, starting from the left, that // we've already traversed. The final string should be the equivalent of // concatenating the strings on the stack from bottom to top. private final Stack<Binary> prefixesStack = new Stack<>(); Binary balance(Binary left, Binary right) { doBalance(left); doBalance(right); // Sweep stack to gather the result Binary partialString = prefixesStack.pop(); while (!prefixesStack.isEmpty()) { Binary newLeft = prefixesStack.pop(); partialString = new RopeBinary(newLeft, partialString); } // We should end up with a RopeBinary since at a minimum we will // create one from concatenating left and right return partialString; } private void doBalance(Binary root) { // BAP95: Insert balanced subtrees whole. This means the result might not // be balanced, leading to repeated rebalancings on concatenate. However, // these rebalancings are shallow due to ignoring balanced subtrees, and // relatively few calls to insert() result. if (root.isBalanced()) { insert(root); } else if (root instanceof RopeBinary) { RopeBinary rbs = (RopeBinary) root; doBalance(rbs.left); doBalance(rbs.right); } else { throw new IllegalArgumentException("Has a new type of Binary been created? Found " + root.getClass()); } } /** * Push a string on the balance stack (BAP95). BAP95 uses an array and calls the elements in the array 'bins'. * We instead use a stack, so the 'bins' of lengths are represented by differences between the elements of * minLengthByDepth. * * <p> * If the length bin for our string, and all shorter length bins, are empty, we just push it on the stack. * Otherwise, we need to start concatenating, putting the given string in the "middle" and continuing until we * land in an empty length bin that matches the length of our concatenation. * * @param byteString * string to place on the balance stack */ private void insert(Binary byteString) { int depthBin = getDepthBinForLength(byteString.size()); int binEnd = MIN_LENGTH_BY_DEPTH[depthBin + 1]; // BAP95: Concatenate all trees occupying bins representing the length of // our new piece or of shorter pieces, to the extent that is possible. // The goal is to clear the bin which our piece belongs in, but that may // not be entirely possible if there aren't enough longer bins occupied. if (prefixesStack.isEmpty() || prefixesStack.peek().size() >= binEnd) { prefixesStack.push(byteString); } else { int binStart = MIN_LENGTH_BY_DEPTH[depthBin]; // Concatenate the subtrees of shorter length Binary newTree = prefixesStack.pop(); while (!prefixesStack.isEmpty() && prefixesStack.peek().size() < binStart) { Binary left = prefixesStack.pop(); newTree = new RopeBinary(left, newTree); } // Concatenate the given string newTree = new RopeBinary(newTree, byteString); // Continue concatenating until we land in an empty bin while (!prefixesStack.isEmpty()) { depthBin = getDepthBinForLength(newTree.size()); binEnd = MIN_LENGTH_BY_DEPTH[depthBin + 1]; if (prefixesStack.peek().size() < binEnd) { Binary left = prefixesStack.pop(); newTree = new RopeBinary(left, newTree); } else { break; } } prefixesStack.push(newTree); } } private int getDepthBinForLength(int length) { int depth = Arrays.binarySearch(MIN_LENGTH_BY_DEPTH, length); if (depth < 0) { // It wasn't an exact match, so convert to the index of the containing // fragment, which is one less even than the insertion point. int insertionPoint = -(depth + 1); depth = insertionPoint - 1; } return depth; } } /** * This class is a continuable tree traversal, which keeps the state information which would exist on the stack in a * recursive traversal instead on a stack of "Bread Crumbs". The maximum depth of the stack in this iterator is the * same as the depth of the tree being traversed. * * <p> * This iterator is used to implement {@link RopeBinary#equalsFragments(Binary)}. */ static class PieceIterator implements Iterator<LiteralBinary> { private final Stack<RopeBinary> breadCrumbs = new Stack<>(); private LiteralBinary next; PieceIterator(Binary root) { next = getLeafByLeft(root); } private LiteralBinary getLeafByLeft(Binary root) { Binary pos = root; while (pos instanceof RopeBinary) { RopeBinary rbs = (RopeBinary) pos; breadCrumbs.push(rbs); pos = rbs.left; } return (LiteralBinary) pos; } private LiteralBinary getNextNonEmptyLeaf() { while (true) { // Almost always, we go through this loop exactly once. However, if // we discover an empty string in the rope, we toss it and try again. if (breadCrumbs.isEmpty()) { return null; } else { LiteralBinary result = getLeafByLeft(breadCrumbs.pop().right); if (!result.isEmpty()) { return result; } } } } public boolean hasNext() { return next != null; } /** * Returns the next item and advances one {@code LiteralBinary}. * * @return next non-empty LiteralBinary or {@code null} */ public LiteralBinary next() { if (next == null) { throw new NoSuchElementException(); } LiteralBinary result = next; next = getNextNonEmptyLeaf(); return result; } public void remove() { throw new UnsupportedOperationException(); } } class RopeByteIterator implements Binary.ByteIterator { private final PieceIterator pieces; private ByteIterator bytes; int bytesRemaining; RopeByteIterator() { pieces = new PieceIterator(RopeBinary.this); bytes = pieces.next().iterator(); bytesRemaining = size(); } public boolean hasNext() { return bytesRemaining > 0; } public Byte next() { return nextByte(); // Does not instantiate a Byte } public byte nextByte() { if (!bytes.hasNext()) { bytes = pieces.next().iterator(); } --bytesRemaining; return bytes.nextByte(); } public void remove() { throw new UnsupportedOperationException(); } } /** * This class is the {@link RopeBinary} equivalent for {@link ByteArrayInputStream}. */ private class RopeInputStream extends InputStream { // Iterates through the pieces of the rope private PieceIterator pieceIterator; // The current piece private LiteralBinary currentPiece; // The size of the current piece private int currentPieceSize; // The index of the next byte to read in the current piece private int currentPieceIndex; // The offset of the start of the current piece in the rope byte string private int currentPieceOffsetInRope; // Offset in the buffer at which user called mark(); private int mark; public RopeInputStream() { initialize(); } @Override public int read(byte[] b, int offset, int length) { if (b == null) { throw new NullPointerException(); } else if (offset < 0 || length < 0 || length > b.length - offset) { throw new IndexOutOfBoundsException(); } return readSkipInternal(b, offset, length); } @Override public long skip(long length) { if (length < 0) { throw new IndexOutOfBoundsException(); } else if (length > Integer.MAX_VALUE) { length = Integer.MAX_VALUE; } return readSkipInternal(null, 0, (int) length); } /** * Internal implementation of read and skip. If b != null, then read the next {@code length} bytes into the * buffer {@code b} at offset {@code offset}. If b == null, then skip the next {@code length} bytes. * <p> * This method assumes that all error checking has already happened. * <p> * Returns the actual number of bytes read or skipped. */ private int readSkipInternal(byte[] b, int offset, int length) { int bytesRemaining = length; while (bytesRemaining > 0) { advanceIfCurrentPieceFullyRead(); if (currentPiece == null) { if (bytesRemaining == length) { // We didn't manage to read anything return -1; } break; } else { // Copy the bytes from this piece. int currentPieceRemaining = currentPieceSize - currentPieceIndex; int count = Math.min(currentPieceRemaining, bytesRemaining); if (b != null) { currentPiece.copyTo(b, currentPieceIndex, offset, count); offset += count; } currentPieceIndex += count; bytesRemaining -= count; } } // Return the number of bytes read. return length - bytesRemaining; } @Override public int read() throws IOException { advanceIfCurrentPieceFullyRead(); if (currentPiece == null) { return -1; } else { return currentPiece.byteAt(currentPieceIndex++) & 0xFF; } } @Override public int available() throws IOException { int bytesRead = currentPieceOffsetInRope + currentPieceIndex; return RopeBinary.this.size() - bytesRead; } @Override public boolean markSupported() { return true; } @Override public void mark(int readAheadLimit) { // Set the mark to our position in the byte string mark = currentPieceOffsetInRope + currentPieceIndex; } @Override public synchronized void reset() { // Just reinitialize and skip the specified number of bytes. initialize(); readSkipInternal(null, 0, mark); } /** Common initialization code used by both the constructor and reset() */ private void initialize() { pieceIterator = new PieceIterator(RopeBinary.this); currentPiece = pieceIterator.next(); currentPieceSize = currentPiece.size(); currentPieceIndex = 0; currentPieceOffsetInRope = 0; } /** * Skips to the next piece if we have read all the data in the current piece. Sets currentPiece to null if we * have reached the end of the input. */ private void advanceIfCurrentPieceFullyRead() { if (currentPiece != null && currentPieceIndex == currentPieceSize) { // Generally, we can only go through this loop at most once, since // empty strings can't end up in a rope. But better to test. currentPieceOffsetInRope += currentPieceSize; currentPieceIndex = 0; if (pieceIterator.hasNext()) { currentPiece = pieceIterator.next(); currentPieceSize = currentPiece.size(); } else { currentPiece = null; currentPieceSize = 0; } } } } }