/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * RandomTree.java * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.trees; import weka.classifiers.Classifier; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.ContingencyTables; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.Randomizable; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import java.util.Enumeration; import java.util.Random; import java.util.Vector; /** <!-- globalinfo-start --> * Class for constructing a tree that considers K randomly chosen attributes at each node. Performs no pruning. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -K <number of attributes> * Number of attributes to randomly investigate * (<1 = int(log(#attributes)+1)).</pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf.</pre> * * <pre> -S <num> * Seed for random number generator. * (default 1)</pre> * * <pre> -depth <num> * The maximum depth of the tree, 0 for unlimited. * (default 0)</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.20 $ */ public class RandomTree extends Classifier implements OptionHandler, WeightedInstancesHandler, Randomizable { /** for serialization */ static final long serialVersionUID = 8934314652175299374L; /** The subtrees appended to this tree. */ protected RandomTree[] m_Successors; /** The attribute to split on. */ protected int m_Attribute = -1; /** The split point. */ protected double m_SplitPoint = Double.NaN; /** The class distribution from the training data. */ protected double[][] m_Distribution = null; /** The header information. */ protected Instances m_Info = null; /** The proportions of training instances going down each branch. */ protected double[] m_Prop = null; /** Class probabilities from the training data. */ protected double[] m_ClassProbs = null; /** Minimum number of instances for leaf. */ protected double m_MinNum = 1.0; /** The number of attributes considered for a split. */ protected int m_KValue = 1; /** The random seed to use. */ protected int m_randomSeed = 1; /** The maximum depth of the tree (0 = unlimited) */ protected int m_MaxDepth = 0; /** a ZeroR model in case no model can be built from the data */ protected Classifier m_ZeroR; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for constructing a tree that considers K randomly " + " chosen attributes at each node. Performs no pruning."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNumTipText() { return "The minimum total weight of the instances in a leaf."; } /** * Get the value of MinNum. * * @return Value of MinNum. */ public double getMinNum() { return m_MinNum; } /** * Set the value of MinNum. * * @param newMinNum Value to assign to MinNum. */ public void setMinNum(double newMinNum) { m_MinNum = newMinNum; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String KValueTipText() { return "Sets the number of randomly chosen attributes."; } /** * Get the value of K. * * @return Value of K. */ public int getKValue() { return m_KValue; } /** * Set the value of K. * * @param k Value to assign to K. */ public void setKValue(int k) { m_KValue = k; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "The random number seed used for selecting attributes."; } /** * Set the seed for random number generation. * * @param seed the seed */ public void setSeed(int seed) { m_randomSeed = seed; } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ public int getSeed() { return m_randomSeed; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maxDepthTipText() { return "The maximum depth of the tree, 0 for unlimited."; } /** * Get the maximum depth of trh tree, 0 for unlimited. * * @return the maximum depth. */ public int getMaxDepth() { return m_MaxDepth; } /** * Set the maximum depth of the tree, 0 for unlimited. * * @param value the maximum depth. */ public void setMaxDepth(int value) { m_MaxDepth = value; } /** * Lists the command-line options for this classifier. * * @return an enumeration over all possible options */ public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option( "\tNumber of attributes to randomly investigate\n" +"\t(<1 = int(log(#attributes)+1)).", "K", 1, "-K <number of attributes>")); newVector.addElement(new Option( "\tSet minimum number of instances per leaf.", "M", 1, "-M <minimum number of instances>")); newVector.addElement(new Option( "\tSeed for random number generator.\n" + "\t(default 1)", "S", 1, "-S <num>")); newVector.addElement(new Option( "\tThe maximum depth of the tree, 0 for unlimited.\n" + "\t(default 0)", "depth", 1, "-depth <num>")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Gets options from this classifier. * * @return the options for the current setup */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); result.add("-K"); result.add("" + getKValue()); result.add("-M"); result.add("" + getMinNum()); result.add("-S"); result.add("" + getSeed()); if (getMaxDepth() > 0) { result.add("-depth"); result.add("" + getMaxDepth()); } options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -K <number of attributes> * Number of attributes to randomly investigate * (<1 = int(log(#attributes)+1)).</pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf.</pre> * * <pre> -S <num> * Seed for random number generator. * (default 1)</pre> * * <pre> -depth <num> * The maximum depth of the tree, 0 for unlimited. * (default 0)</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception{ String tmpStr; tmpStr = Utils.getOption('K', options); if (tmpStr.length() != 0) { m_KValue = Integer.parseInt(tmpStr); } else { m_KValue = 1; } tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) { m_MinNum = Double.parseDouble(tmpStr); } else { m_MinNum = 1; } tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) { setSeed(Integer.parseInt(tmpStr)); } else { setSeed(1); } tmpStr = Utils.getOption("depth", options); if (tmpStr.length() != 0) { setMaxDepth(Integer.parseInt(tmpStr)); } else { setMaxDepth(0); } super.setOptions(options); Utils.checkForRemainingOptions(options); } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Builds classifier. * * @param data the data to train with * @throws Exception if something goes wrong or the data doesn't fit */ public void buildClassifier(Instances data) throws Exception { // Make sure K value is in range if (m_KValue > data.numAttributes()-1) m_KValue = data.numAttributes()-1; if (m_KValue < 1) m_KValue = (int) Utils.log2(data.numAttributes())+1; // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); // only class? -> build ZeroR model if (data.numAttributes() == 1) { System.err.println( "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(data); return; } else { m_ZeroR = null; } Instances train = data; // Create array of sorted indices and weights int[][] sortedIndices = new int[train.numAttributes()][0]; double[][] weights = new double[train.numAttributes()][0]; double[] vals = new double[train.numInstances()]; for (int j = 0; j < train.numAttributes(); j++) { if (j != train.classIndex()) { weights[j] = new double[train.numInstances()]; if (train.attribute(j).isNominal()) { // Handling nominal attributes. Putting indices of // instances with missing values at the end. sortedIndices[j] = new int[train.numInstances()]; int count = 0; for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); if (!inst.isMissing(j)) { sortedIndices[j][count] = i; weights[j][count] = inst.weight(); count++; } } for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); if (inst.isMissing(j)) { sortedIndices[j][count] = i; weights[j][count] = inst.weight(); count++; } } } else { // Sorted indices are computed for numeric attributes for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); vals[i] = inst.value(j); } sortedIndices[j] = Utils.sort(vals); for (int i = 0; i < train.numInstances(); i++) { weights[j][i] = train.instance(sortedIndices[j][i]).weight(); } } } } // Compute initial class counts double[] classProbs = new double[train.numClasses()]; for (int i = 0; i < train.numInstances(); i++) { Instance inst = train.instance(i); classProbs[(int)inst.classValue()] += inst.weight(); } // Create the attribute indices window int[] attIndicesWindow = new int[data.numAttributes()-1]; int j=0; for (int i=0; i<attIndicesWindow.length; i++) { if (j == data.classIndex()) j++; // do not include the class attIndicesWindow[i] = j++; } // Build tree buildTree(sortedIndices, weights, train, classProbs, new Instances(train, 0), m_MinNum, m_Debug, attIndicesWindow, data.getRandomNumberGenerator(m_randomSeed), 0); } /** * Computes class distribution of an instance using the decision tree. * * @param instance the instance to compute the distribution for * @return the computed class distribution * @throws Exception if computation fails */ public double[] distributionForInstance(Instance instance) throws Exception { // default model? if (m_ZeroR != null) { return m_ZeroR.distributionForInstance(instance); } double[] returnedDist = null; if (m_Attribute > -1) { // Node is not a leaf if (instance.isMissing(m_Attribute)) { // Value is missing returnedDist = new double[m_Info.numClasses()]; // Split instance up for (int i = 0; i < m_Successors.length; i++) { double[] help = m_Successors[i].distributionForInstance(instance); if (help != null) { for (int j = 0; j < help.length; j++) { returnedDist[j] += m_Prop[i] * help[j]; } } } } else if (m_Info.attribute(m_Attribute).isNominal()) { // For nominal attributes returnedDist = m_Successors[(int)instance.value(m_Attribute)]. distributionForInstance(instance); } else { // For numeric attributes if (instance.value(m_Attribute) < m_SplitPoint) { returnedDist = m_Successors[0].distributionForInstance(instance); } else { returnedDist = m_Successors[1].distributionForInstance(instance); } } } if ((m_Attribute == -1) || (returnedDist == null)) { // Node is a leaf or successor is empty return m_ClassProbs; } else { return returnedDist; } } /** * Outputs the decision tree as a graph * * @return the tree as a graph */ public String toGraph() { try { StringBuffer resultBuff = new StringBuffer(); toGraph(resultBuff, 0); String result = "digraph Tree {\n" + "edge [style=bold]\n" + resultBuff.toString() + "\n}\n"; return result; } catch (Exception e) { return null; } } /** * Outputs one node for graph. * * @param text the buffer to append the output to * @param num unique node id * @return the next node id * @throws Exception if generation fails */ public int toGraph(StringBuffer text, int num) throws Exception { int maxIndex = Utils.maxIndex(m_ClassProbs); String classValue = m_Info.classAttribute().value(maxIndex); num++; if (m_Attribute == -1) { text.append("N" + Integer.toHexString(hashCode()) + " [label=\"" + num + ": " + classValue + "\"" + "shape=box]\n"); }else { text.append("N" + Integer.toHexString(hashCode()) + " [label=\"" + num + ": " + classValue + "\"]\n"); for (int i = 0; i < m_Successors.length; i++) { text.append("N" + Integer.toHexString(hashCode()) + "->" + "N" + Integer.toHexString(m_Successors[i].hashCode()) + " [label=\"" + m_Info.attribute(m_Attribute).name()); if (m_Info.attribute(m_Attribute).isNumeric()) { if (i == 0) { text.append(" < " + Utils.doubleToString(m_SplitPoint, 2)); } else { text.append(" >= " + Utils.doubleToString(m_SplitPoint, 2)); } } else { text.append(" = " + m_Info.attribute(m_Attribute).value(i)); } text.append("\"]\n"); num = m_Successors[i].toGraph(text, num); } } return num; } /** * Outputs the decision tree. * * @return a string representation of the classifier */ public String toString() { // only ZeroR model? if (m_ZeroR != null) { StringBuffer buf = new StringBuffer(); buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); buf.append(m_ZeroR.toString()); return buf.toString(); } if (m_Successors == null) { return "RandomTree: no model has been built yet."; } else { return "\nRandomTree\n==========\n" + toString(0) + "\n" + "\nSize of the tree : " + numNodes() + (getMaxDepth() > 0 ? ("\nMax depth of tree: " + getMaxDepth()) : ("")); } } /** * Outputs a leaf. * * @return the leaf as string * @throws Exception if generation fails */ protected String leafString() throws Exception { int maxIndex = Utils.maxIndex(m_Distribution[0]); return " : " + m_Info.classAttribute().value(maxIndex) + " (" + Utils.doubleToString(Utils.sum(m_Distribution[0]), 2) + "/" + Utils.doubleToString((Utils.sum(m_Distribution[0]) - m_Distribution[0][maxIndex]), 2) + ")"; } /** * Recursively outputs the tree. * * @param level the current level of the tree * @return the generated subtree */ protected String toString(int level) { try { StringBuffer text = new StringBuffer(); if (m_Attribute == -1) { // Output leaf info return leafString(); } else if (m_Info.attribute(m_Attribute).isNominal()) { // For nominal attributes for (int i = 0; i < m_Successors.length; i++) { text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " = " + m_Info.attribute(m_Attribute).value(i)); text.append(m_Successors[i].toString(level + 1)); } } else { // For numeric attributes text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " < " + Utils.doubleToString(m_SplitPoint, 2)); text.append(m_Successors[0].toString(level + 1)); text.append("\n"); for (int j = 0; j < level; j++) { text.append("| "); } text.append(m_Info.attribute(m_Attribute).name() + " >= " + Utils.doubleToString(m_SplitPoint, 2)); text.append(m_Successors[1].toString(level + 1)); } return text.toString(); } catch (Exception e) { e.printStackTrace(); return "RandomTree: tree can't be printed"; } } /** * Recursively generates a tree. * * @param sortedIndices the indices of the instances * @param weights the weights of the instances * @param data the data to work with * @param classProbs the class distribution * @param header the header of the data * @param minNum the minimum number of instances per leaf * @param debug whether debugging is on * @param attIndicesWindow the attribute window to choose attributes from * @param random random number generator for choosing random attributes * @param depth the current depth * @throws Exception if generation fails */ protected void buildTree(int[][] sortedIndices, double[][] weights, Instances data, double[] classProbs, Instances header, double minNum, boolean debug, int[] attIndicesWindow, Random random, int depth) throws Exception { // Store structure of dataset, set minimum number of instances m_Info = header; m_Debug = debug; m_MinNum = minNum; // Make leaf if there are no training instances if (((data.classIndex() > 0) && (sortedIndices[0].length == 0)) || ((data.classIndex() == 0) && sortedIndices[1].length == 0)) { m_Distribution = new double[1][data.numClasses()]; m_ClassProbs = null; return; } // Check if node doesn't contain enough instances or is pure // or maximum depth reached m_ClassProbs = new double[classProbs.length]; System.arraycopy(classProbs, 0, m_ClassProbs, 0, classProbs.length); if (Utils.sum(m_ClassProbs) < 2 * m_MinNum || Utils.eq(m_ClassProbs[Utils.maxIndex(m_ClassProbs)], Utils.sum(m_ClassProbs)) || ((getMaxDepth() > 0) && (depth >= getMaxDepth()))) { // Make leaf m_Attribute = -1; m_Distribution = new double[1][m_ClassProbs.length]; for (int i = 0; i < m_ClassProbs.length; i++) { m_Distribution[0][i] = m_ClassProbs[i]; } Utils.normalize(m_ClassProbs); return; } // Compute class distributions and value of splitting // criterion for each attribute double[] vals = new double[data.numAttributes()]; double[][][] dists = new double[data.numAttributes()][0][0]; double[][] props = new double[data.numAttributes()][0]; double[] splits = new double[data.numAttributes()]; // Investigate K random attributes int attIndex = 0; int windowSize = attIndicesWindow.length; int k = m_KValue; boolean gainFound = false; while ((windowSize > 0) && (k-- > 0 || !gainFound)) { int chosenIndex = random.nextInt(windowSize); attIndex = attIndicesWindow[chosenIndex]; // shift chosen attIndex out of window attIndicesWindow[chosenIndex] = attIndicesWindow[windowSize-1]; attIndicesWindow[windowSize-1] = attIndex; windowSize--; splits[attIndex] = distribution(props, dists, attIndex, sortedIndices[attIndex], weights[attIndex], data); vals[attIndex] = gain(dists[attIndex], priorVal(dists[attIndex])); if (vals[attIndex] > 0) gainFound = true; } // Find best attribute m_Attribute = Utils.maxIndex(vals); m_Distribution = dists[m_Attribute]; // Any useful split found? if (vals[m_Attribute] > 0) { // Build subtrees m_SplitPoint = splits[m_Attribute]; m_Prop = props[m_Attribute]; int[][][] subsetIndices = new int[m_Distribution.length][data.numAttributes()][0]; double[][][] subsetWeights = new double[m_Distribution.length][data.numAttributes()][0]; splitData(subsetIndices, subsetWeights, m_Attribute, m_SplitPoint, sortedIndices, weights, m_Distribution, data); m_Successors = new RandomTree[m_Distribution.length]; for (int i = 0; i < m_Distribution.length; i++) { m_Successors[i] = new RandomTree(); m_Successors[i].setKValue(m_KValue); m_Successors[i].setMaxDepth(getMaxDepth()); m_Successors[i].buildTree(subsetIndices[i], subsetWeights[i], data, m_Distribution[i], header, m_MinNum, m_Debug, attIndicesWindow, random, depth + 1); } } else { // Make leaf m_Attribute = -1; m_Distribution = new double[1][m_ClassProbs.length]; for (int i = 0; i < m_ClassProbs.length; i++) { m_Distribution[0][i] = m_ClassProbs[i]; } } // Normalize class counts Utils.normalize(m_ClassProbs); } /** * Computes size of the tree. * * @return the number of nodes */ public int numNodes() { if (m_Attribute == -1) { return 1; } else { int size = 1; for (int i = 0; i < m_Successors.length; i++) { size += m_Successors[i].numNodes(); } return size; } } /** * Splits instances into subsets. * * @param subsetIndices the sorted indices of the subset * @param subsetWeights the weights of the subset * @param att the attribute index * @param splitPoint the splitpoint for numeric attributes * @param sortedIndices the sorted indices of the whole set * @param weights the weights of the whole set * @param dist the distribution * @param data the data to work with * @throws Exception if something goes wrong */ protected void splitData(int[][][] subsetIndices, double[][][] subsetWeights, int att, double splitPoint, int[][] sortedIndices, double[][] weights, double[][] dist, Instances data) throws Exception { int j; int[] num; // For each attribute for (int i = 0; i < data.numAttributes(); i++) { if (i != data.classIndex()) { if (data.attribute(att).isNominal()) { // For nominal attributes num = new int[data.attribute(att).numValues()]; for (int k = 0; k < num.length; k++) { subsetIndices[k][i] = new int[sortedIndices[i].length]; subsetWeights[k][i] = new double[sortedIndices[i].length]; } for (j = 0; j < sortedIndices[i].length; j++) { Instance inst = data.instance(sortedIndices[i][j]); if (inst.isMissing(att)) { // Split instance up for (int k = 0; k < num.length; k++) { if (m_Prop[k] > 0) { subsetIndices[k][i][num[k]] = sortedIndices[i][j]; subsetWeights[k][i][num[k]] = m_Prop[k] * weights[i][j]; num[k]++; } } } else { int subset = (int)inst.value(att); subsetIndices[subset][i][num[subset]] = sortedIndices[i][j]; subsetWeights[subset][i][num[subset]] = weights[i][j]; num[subset]++; } } } else { // For numeric attributes num = new int[2]; for (int k = 0; k < 2; k++) { subsetIndices[k][i] = new int[sortedIndices[i].length]; subsetWeights[k][i] = new double[weights[i].length]; } for (j = 0; j < sortedIndices[i].length; j++) { Instance inst = data.instance(sortedIndices[i][j]); if (inst.isMissing(att)) { // Split instance up for (int k = 0; k < num.length; k++) { if (m_Prop[k] > 0) { subsetIndices[k][i][num[k]] = sortedIndices[i][j]; subsetWeights[k][i][num[k]] = m_Prop[k] * weights[i][j]; num[k]++; } } } else { int subset = (inst.value(att) < splitPoint) ? 0 : 1; subsetIndices[subset][i][num[subset]] = sortedIndices[i][j]; subsetWeights[subset][i][num[subset]] = weights[i][j]; num[subset]++; } } } // Trim arrays for (int k = 0; k < num.length; k++) { int[] copy = new int[num[k]]; System.arraycopy(subsetIndices[k][i], 0, copy, 0, num[k]); subsetIndices[k][i] = copy; double[] copyWeights = new double[num[k]]; System.arraycopy(subsetWeights[k][i], 0, copyWeights, 0, num[k]); subsetWeights[k][i] = copyWeights; } } } } /** * Computes class distribution for an attribute. * * @param props * @param dists * @param att the attribute index * @param sortedIndices the sorted indices of the data * @param weights * @param data the data to work with * @throws Exception if something goes wrong */ protected double distribution(double[][] props, double[][][] dists, int att, int[] sortedIndices, double[] weights, Instances data) throws Exception { double splitPoint = Double.NaN; Attribute attribute = data.attribute(att); double[][] dist = null; int i; if (attribute.isNominal()) { // For nominal attributes dist = new double[attribute.numValues()][data.numClasses()]; for (i = 0; i < sortedIndices.length; i++) { Instance inst = data.instance(sortedIndices[i]); if (inst.isMissing(att)) { break; } dist[(int)inst.value(att)][(int)inst.classValue()] += weights[i]; } } else { // For numeric attributes double[][] currDist = new double[2][data.numClasses()]; dist = new double[2][data.numClasses()]; // Move all instances into second subset for (int j = 0; j < sortedIndices.length; j++) { Instance inst = data.instance(sortedIndices[j]); if (inst.isMissing(att)) { break; } currDist[1][(int)inst.classValue()] += weights[j]; } double priorVal = priorVal(currDist); for (int j = 0; j < currDist.length; j++) { System.arraycopy(currDist[j], 0, dist[j], 0, dist[j].length); } // Try all possible split points double currSplit = data.instance(sortedIndices[0]).value(att); double currVal, bestVal = -Double.MAX_VALUE; for (i = 0; i < sortedIndices.length; i++) { Instance inst = data.instance(sortedIndices[i]); if (inst.isMissing(att)) { break; } if (inst.value(att) > currSplit) { currVal = gain(currDist, priorVal); if (currVal > bestVal) { bestVal = currVal; splitPoint = (inst.value(att) + currSplit) / 2.0; for (int j = 0; j < currDist.length; j++) { System.arraycopy(currDist[j], 0, dist[j], 0, dist[j].length); } } } currSplit = inst.value(att); currDist[0][(int)inst.classValue()] += weights[i]; currDist[1][(int)inst.classValue()] -= weights[i]; } } // Compute weights props[att] = new double[dist.length]; for (int k = 0; k < props[att].length; k++) { props[att][k] = Utils.sum(dist[k]); } if (Utils.eq(Utils.sum(props[att]), 0)) { for (int k = 0; k < props[att].length; k++) { props[att][k] = 1.0 / (double)props[att].length; } } else { Utils.normalize(props[att]); } // Any instances with missing values ? if (i < sortedIndices.length) { // Distribute counts while (i < sortedIndices.length) { Instance inst = data.instance(sortedIndices[i]); for (int j = 0; j < dist.length; j++) { dist[j][(int)inst.classValue()] += props[att][j] * weights[i]; } i++; } } // Return distribution and split point dists[att] = dist; return splitPoint; } /** * Computes value of splitting criterion before split. * * @param dist the distributions * @return the splitting criterion */ protected double priorVal(double[][] dist) { return ContingencyTables.entropyOverColumns(dist); } /** * Computes value of splitting criterion after split. * * @param dist the distributions * @param priorVal the splitting criterion * @return the gain after the split */ protected double gain(double[][] dist, double priorVal) { return priorVal - ContingencyTables.entropyConditionedOnRows(dist); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.20 $"); } /** * Main method for this class. * * @param argv the commandline parameters */ public static void main(String[] argv) { runClassifier(new RandomTree(), argv); } }