/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kylin.engine.mr.steps;
import java.io.IOException;
import java.util.Random;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.kylin.common.KylinConfig;
import org.apache.kylin.common.persistence.ResourceStore;
import org.apache.kylin.common.util.HadoopUtil;
import org.apache.kylin.cube.CubeSegment;
import org.apache.kylin.engine.mr.CubingJob;
import org.apache.kylin.engine.mr.CubingJob.AlgorithmEnum;
import org.apache.kylin.engine.mr.common.BatchConstants;
import org.apache.kylin.engine.mr.common.CubeStatsReader;
import org.apache.kylin.job.exception.ExecuteException;
import org.apache.kylin.job.execution.AbstractExecutable;
import org.apache.kylin.job.execution.ExecutableContext;
import org.apache.kylin.job.execution.ExecuteResult;
import org.apache.kylin.metadata.model.MeasureDesc;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Save the cube segment statistic to Kylin metadata store
*/
public class SaveStatisticsStep extends AbstractExecutable {
private static final Logger logger = LoggerFactory.getLogger(SaveStatisticsStep.class);
public SaveStatisticsStep() {
super();
}
@Override
protected ExecuteResult doWork(ExecutableContext context) throws ExecuteException {
CubeSegment newSegment = CubingExecutableUtil.findSegment(context, CubingExecutableUtil.getCubeName(this.getParams()), CubingExecutableUtil.getSegmentId(this.getParams()));
KylinConfig kylinConf = newSegment.getConfig();
ResourceStore rs = ResourceStore.getStore(kylinConf);
try {
FileSystem fs = HadoopUtil.getWorkingFileSystem();
Path statisticsDir = new Path(CubingExecutableUtil.getStatisticsPath(this.getParams()));
Path statisticsFilePath = HadoopUtil.getFilterOnlyPath(fs, statisticsDir, BatchConstants.CFG_OUTPUT_STATISTICS);
if (statisticsFilePath == null) {
throw new IOException("fail to find the statistics file in base dir: " + statisticsDir);
}
FSDataInputStream is = fs.open(statisticsFilePath);
try {
// put the statistics to metadata store
String statisticsFileName = newSegment.getStatisticsResourcePath();
rs.putResource(statisticsFileName, is, System.currentTimeMillis());
} finally {
IOUtils.closeStream(is);
}
decideCubingAlgorithm(newSegment, kylinConf);
return new ExecuteResult(ExecuteResult.State.SUCCEED, "succeed");
} catch (IOException e) {
logger.error("fail to save cuboid statistics", e);
return new ExecuteResult(ExecuteResult.State.ERROR, e.getLocalizedMessage());
}
}
private void decideCubingAlgorithm(CubeSegment seg, KylinConfig kylinConf) throws IOException {
String algPref = kylinConf.getCubeAlgorithm();
AlgorithmEnum alg;
if (AlgorithmEnum.INMEM.name().equalsIgnoreCase(algPref)) {
alg = AlgorithmEnum.INMEM;
} else if (AlgorithmEnum.LAYER.name().equalsIgnoreCase(algPref)) {
alg = AlgorithmEnum.LAYER;
} else {
int memoryHungryMeasures = 0;
for (MeasureDesc measure : seg.getCubeDesc().getMeasures()) {
if (measure.getFunction().getMeasureType().isMemoryHungry()) {
logger.info("This cube has memory-hungry measure " + measure.getFunction().getExpression());
memoryHungryMeasures++;
}
}
if (memoryHungryMeasures > 0) {
alg = AlgorithmEnum.LAYER;
} else if ("random".equalsIgnoreCase(algPref)) { // for testing
alg = new Random().nextBoolean() ? AlgorithmEnum.INMEM : AlgorithmEnum.LAYER;
} else { // the default
CubeStatsReader cubeStats = new CubeStatsReader(seg, kylinConf);
int mapperNumber = cubeStats.getMapperNumberOfFirstBuild();
int mapperNumLimit = kylinConf.getCubeAlgorithmAutoMapperLimit();
double mapperOverlapRatio = cubeStats.getMapperOverlapRatioOfFirstBuild();
double overlapThreshold = kylinConf.getCubeAlgorithmAutoThreshold();
logger.info("mapperNumber for " + seg + " is " + mapperNumber + " and threshold is " + mapperNumLimit);
logger.info("mapperOverlapRatio for " + seg + " is " + mapperOverlapRatio + " and threshold is " + overlapThreshold);
// in-mem cubing is good when
// 1) the cluster has enough mapper slots to run in parallel
// 2) the mapper overlap ratio is small, meaning the shuffle of in-mem MR has advantage
alg = (mapperNumber <= mapperNumLimit && mapperOverlapRatio <= overlapThreshold)//
? AlgorithmEnum.INMEM : AlgorithmEnum.LAYER;
}
}
logger.info("The cube algorithm for " + seg + " is " + alg);
CubingJob cubingJob = (CubingJob) getManager().getJob(CubingExecutableUtil.getCubingJobId(this.getParams()));
cubingJob.setAlgorithm(alg);
}
}