/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.random; import java.io.Serializable; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.security.NoSuchProviderException; import java.security.SecureRandom; import java.util.Collection; import org.apache.commons.math3.distribution.BetaDistribution; import org.apache.commons.math3.distribution.BinomialDistribution; import org.apache.commons.math3.distribution.CauchyDistribution; import org.apache.commons.math3.distribution.ChiSquaredDistribution; import org.apache.commons.math3.distribution.ExponentialDistribution; import org.apache.commons.math3.distribution.FDistribution; import org.apache.commons.math3.distribution.GammaDistribution; import org.apache.commons.math3.distribution.HypergeometricDistribution; import org.apache.commons.math3.distribution.PascalDistribution; import org.apache.commons.math3.distribution.PoissonDistribution; import org.apache.commons.math3.distribution.TDistribution; import org.apache.commons.math3.distribution.WeibullDistribution; import org.apache.commons.math3.distribution.ZipfDistribution; import org.apache.commons.math3.exception.MathInternalError; import org.apache.commons.math3.exception.NotANumberException; import org.apache.commons.math3.exception.NotFiniteNumberException; import org.apache.commons.math3.exception.NotPositiveException; import org.apache.commons.math3.exception.NotStrictlyPositiveException; import org.apache.commons.math3.exception.NumberIsTooLargeException; import org.apache.commons.math3.exception.OutOfRangeException; import org.apache.commons.math3.exception.util.LocalizedFormats; import org.apache.commons.math3.util.FastMath; /** * Implements the {@link RandomData} interface using a {@link RandomGenerator} * instance to generate non-secure data and a {@link java.security.SecureRandom} * instance to provide data for the <code>nextSecureXxx</code> methods. If no * <code>RandomGenerator</code> is provided in the constructor, the default is * to use a {@link Well19937c} generator. To plug in a different * implementation, either implement <code>RandomGenerator</code> directly or * extend {@link AbstractRandomGenerator}. * <p> * Supports reseeding the underlying pseudo-random number generator (PRNG). The * <code>SecurityProvider</code> and <code>Algorithm</code> used by the * <code>SecureRandom</code> instance can also be reset. * </p> * <p> * For details on the default PRNGs, see {@link java.util.Random} and * {@link java.security.SecureRandom}. * </p> * <p> * <strong>Usage Notes</strong>: * <ul> * <li> * Instance variables are used to maintain <code>RandomGenerator</code> and * <code>SecureRandom</code> instances used in data generation. Therefore, to * generate a random sequence of values or strings, you should use just * <strong>one</strong> <code>RandomDataImpl</code> instance repeatedly.</li> * <li> * The "secure" methods are *much* slower. These should be used only when a * cryptographically secure random sequence is required. A secure random * sequence is a sequence of pseudo-random values which, in addition to being * well-dispersed (so no subsequence of values is an any more likely than other * subsequence of the the same length), also has the additional property that * knowledge of values generated up to any point in the sequence does not make * it any easier to predict subsequent values.</li> * <li> * When a new <code>RandomDataImpl</code> is created, the underlying random * number generators are <strong>not</strong> initialized. If you do not * explicitly seed the default non-secure generator, it is seeded with the * current time in milliseconds plus the system identity hash code on first use. * The same holds for the secure generator. If you provide a <code>RandomGenerator</code> * to the constructor, however, this generator is not reseeded by the constructor * nor is it reseeded on first use.</li> * <li> * The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the * corresponding methods on the underlying <code>RandomGenerator</code> and * <code>SecureRandom</code> instances. Therefore, <code>reSeed(long)</code> * fully resets the initial state of the non-secure random number generator (so * that reseeding with a specific value always results in the same subsequent * random sequence); whereas reSeedSecure(long) does <strong>not</strong> * reinitialize the secure random number generator (so secure sequences started * with calls to reseedSecure(long) won't be identical).</li> * <li> * This implementation is not synchronized. The underlying <code>RandomGenerator</code> * or <code>SecureRandom</code> instances are not protected by synchronization and * are not guaranteed to be thread-safe. Therefore, if an instance of this class * is concurrently utilized by multiple threads, it is the responsibility of * client code to synchronize access to seeding and data generation methods. * </li> * </ul> * </p> * @since 3.1 * @version $Id: RandomDataGenerator.java 1422313 2012-12-15 18:53:41Z psteitz $ */ public class RandomDataGenerator implements RandomData, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -626730818244969716L; /** underlying random number generator */ private RandomGenerator rand = null; /** underlying secure random number generator */ private SecureRandom secRand = null; /** * Construct a RandomDataGenerator, using a default random generator as the source * of randomness. * * <p>The default generator is a {@link Well19937c} seeded * with {@code System.currentTimeMillis() + System.identityHashCode(this))}. * The generator is initialized and seeded on first use.</p> */ public RandomDataGenerator() { } /** * Construct a RandomDataGenerator using the supplied {@link RandomGenerator} as * the source of (non-secure) random data. * * @param rand the source of (non-secure) random data * (may be null, resulting in the default generator) */ public RandomDataGenerator(RandomGenerator rand) { this.rand = rand; } /** * {@inheritDoc} * <p> * <strong>Algorithm Description:</strong> hex strings are generated using a * 2-step process. * <ol> * <li>{@code len / 2 + 1} binary bytes are generated using the underlying * Random</li> * <li>Each binary byte is translated into 2 hex digits</li> * </ol> * </p> * * @param len the desired string length. * @return the random string. * @throws NotStrictlyPositiveException if {@code len <= 0}. */ public String nextHexString(int len) throws NotStrictlyPositiveException { if (len <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len); } // Get a random number generator RandomGenerator ran = getRan(); // Initialize output buffer StringBuilder outBuffer = new StringBuilder(); // Get int(len/2)+1 random bytes byte[] randomBytes = new byte[(len / 2) + 1]; ran.nextBytes(randomBytes); // Convert each byte to 2 hex digits for (int i = 0; i < randomBytes.length; i++) { Integer c = Integer.valueOf(randomBytes[i]); /* * Add 128 to byte value to make interval 0-255 before doing hex * conversion. This guarantees <= 2 hex digits from toHexString() * toHexString would otherwise add 2^32 to negative arguments. */ String hex = Integer.toHexString(c.intValue() + 128); // Make sure we add 2 hex digits for each byte if (hex.length() == 1) { hex = "0" + hex; } outBuffer.append(hex); } return outBuffer.toString().substring(0, len); } /** {@inheritDoc} */ public int nextInt(int lower, int upper) throws NumberIsTooLargeException { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } double r = getRan().nextDouble(); double scaled = r * upper + (1.0 - r) * lower + r; return (int) FastMath.floor(scaled); } /** {@inheritDoc} */ public long nextLong(long lower, long upper) throws NumberIsTooLargeException { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } double r = getRan().nextDouble(); double scaled = r * upper + (1.0 - r) * lower + r; return (long)FastMath.floor(scaled); } /** * {@inheritDoc} * <p> * <strong>Algorithm Description:</strong> hex strings are generated in * 40-byte segments using a 3-step process. * <ol> * <li> * 20 random bytes are generated using the underlying * <code>SecureRandom</code>.</li> * <li> * SHA-1 hash is applied to yield a 20-byte binary digest.</li> * <li> * Each byte of the binary digest is converted to 2 hex digits.</li> * </ol> * </p> * @throws NotStrictlyPositiveException if {@code len <= 0} */ public String nextSecureHexString(int len) throws NotStrictlyPositiveException { if (len <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.LENGTH, len); } // Get SecureRandom and setup Digest provider SecureRandom secRan = getSecRan(); MessageDigest alg = null; try { alg = MessageDigest.getInstance("SHA-1"); } catch (NoSuchAlgorithmException ex) { // this should never happen throw new MathInternalError(ex); } alg.reset(); // Compute number of iterations required (40 bytes each) int numIter = (len / 40) + 1; StringBuilder outBuffer = new StringBuilder(); for (int iter = 1; iter < numIter + 1; iter++) { byte[] randomBytes = new byte[40]; secRan.nextBytes(randomBytes); alg.update(randomBytes); // Compute hash -- will create 20-byte binary hash byte[] hash = alg.digest(); // Loop over the hash, converting each byte to 2 hex digits for (int i = 0; i < hash.length; i++) { Integer c = Integer.valueOf(hash[i]); /* * Add 128 to byte value to make interval 0-255 This guarantees * <= 2 hex digits from toHexString() toHexString would * otherwise add 2^32 to negative arguments */ String hex = Integer.toHexString(c.intValue() + 128); // Keep strings uniform length -- guarantees 40 bytes if (hex.length() == 1) { hex = "0" + hex; } outBuffer.append(hex); } } return outBuffer.toString().substring(0, len); } /** {@inheritDoc} */ public int nextSecureInt(int lower, int upper) throws NumberIsTooLargeException { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } SecureRandom sec = getSecRan(); final double r = sec.nextDouble(); final double scaled = r * upper + (1.0 - r) * lower + r; return (int)FastMath.floor(scaled); } /** {@inheritDoc} */ public long nextSecureLong(long lower, long upper) throws NumberIsTooLargeException { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } SecureRandom sec = getSecRan(); final double r = sec.nextDouble(); final double scaled = r * upper + (1.0 - r) * lower + r; return (long)FastMath.floor(scaled); } /** * {@inheritDoc} * <p> * <strong>Algorithm Description</strong>: * <ul><li> For small means, uses simulation of a Poisson process * using Uniform deviates, as described * <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm"> here.</a> * The Poisson process (and hence value returned) is bounded by 1000 * mean.</li> * * <li> For large means, uses the rejection algorithm described in <br/> * Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i> * <strong>Computing</strong> vol. 26 pp. 197-207.</li></ul></p> * @throws NotStrictlyPositiveException if {@code len <= 0} */ public long nextPoisson(double mean) throws NotStrictlyPositiveException { return new PoissonDistribution(getRan(), mean, PoissonDistribution.DEFAULT_EPSILON, PoissonDistribution.DEFAULT_MAX_ITERATIONS).sample(); } /** {@inheritDoc} */ public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException { if (sigma <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sigma); } return sigma * getRan().nextGaussian() + mu; } /** * {@inheritDoc} * * <p> * <strong>Algorithm Description</strong>: Uses the Algorithm SA (Ahrens) * from p. 876 in: * [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for * sampling from the exponential and normal distributions. * Communications of the ACM, 15, 873-882. * </p> */ public double nextExponential(double mean) throws NotStrictlyPositiveException { return new ExponentialDistribution(getRan(), mean, ExponentialDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * <p>Generates a random value from the * {@link org.apache.commons.math3.distribution.GammaDistribution Gamma Distribution}.</p> * * <p>This implementation uses the following algorithms: </p> * * <p>For 0 < shape < 1: <br/> * Ahrens, J. H. and Dieter, U., <i>Computer methods for * sampling from gamma, beta, Poisson and binomial distributions.</i> * Computing, 12, 223-246, 1974.</p> * * <p>For shape >= 1: <br/> * Marsaglia and Tsang, <i>A Simple Method for Generating * Gamma Variables.</i> ACM Transactions on Mathematical Software, * Volume 26 Issue 3, September, 2000.</p> * * @param shape the median of the Gamma distribution * @param scale the scale parameter of the Gamma distribution * @return random value sampled from the Gamma(shape, scale) distribution * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. */ public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException { return new GammaDistribution(getRan(),shape, scale, GammaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link HypergeometricDistribution Hypergeometric Distribution}. * * @param populationSize the population size of the Hypergeometric distribution * @param numberOfSuccesses number of successes in the population of the Hypergeometric distribution * @param sampleSize the sample size of the Hypergeometric distribution * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, * or {@code sampleSize > populationSize}. * @throws NotStrictlyPositiveException if {@code populationSize <= 0}. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. */ public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException { return new HypergeometricDistribution(getRan(),populationSize, numberOfSuccesses, sampleSize).sample(); } /** * Generates a random value from the {@link PascalDistribution Pascal Distribution}. * * @param r the number of successes of the Pascal distribution * @param p the probability of success of the Pascal distribution * @return random value sampled from the Pascal(r, p) distribution * @throws NotStrictlyPositiveException if the number of successes is not positive * @throws OutOfRangeException if the probability of success is not in the * range {@code [0, 1]}. */ public int nextPascal(int r, double p) throws NotStrictlyPositiveException, OutOfRangeException { return new PascalDistribution(getRan(), r, p).sample(); } /** * Generates a random value from the {@link TDistribution T Distribution}. * * @param df the degrees of freedom of the T distribution * @return random value from the T(df) distribution * @throws NotStrictlyPositiveException if {@code df <= 0} */ public double nextT(double df) throws NotStrictlyPositiveException { return new TDistribution(getRan(), df, TDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link WeibullDistribution Weibull Distribution}. * * @param shape the shape parameter of the Weibull distribution * @param scale the scale parameter of the Weibull distribution * @return random value sampled from the Weibull(shape, size) distribution * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. */ public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException { return new WeibullDistribution(getRan(), shape, scale, WeibullDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link ZipfDistribution Zipf Distribution}. * * @param numberOfElements the number of elements of the ZipfDistribution * @param exponent the exponent of the ZipfDistribution * @return random value sampled from the Zipf(numberOfElements, exponent) distribution * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0} * or {@code exponent <= 0}. */ public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException { return new ZipfDistribution(getRan(), numberOfElements, exponent).sample(); } /** * Generates a random value from the {@link BetaDistribution Beta Distribution}. * * @param alpha first distribution shape parameter * @param beta second distribution shape parameter * @return random value sampled from the beta(alpha, beta) distribution */ public double nextBeta(double alpha, double beta) { return new BetaDistribution(getRan(), alpha, beta, BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link BinomialDistribution Binomial Distribution}. * * @param numberOfTrials number of trials of the Binomial distribution * @param probabilityOfSuccess probability of success of the Binomial distribution * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution */ public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) { return new BinomialDistribution(getRan(), numberOfTrials, probabilityOfSuccess).sample(); } /** * Generates a random value from the {@link CauchyDistribution Cauchy Distribution}. * * @param median the median of the Cauchy distribution * @param scale the scale parameter of the Cauchy distribution * @return random value sampled from the Cauchy(median, scale) distribution */ public double nextCauchy(double median, double scale) { return new CauchyDistribution(getRan(), median, scale, CauchyDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link ChiSquaredDistribution ChiSquare Distribution}. * * @param df the degrees of freedom of the ChiSquare distribution * @return random value sampled from the ChiSquare(df) distribution */ public double nextChiSquare(double df) { return new ChiSquaredDistribution(getRan(), df, ChiSquaredDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * Generates a random value from the {@link FDistribution F Distribution}. * * @param numeratorDf the numerator degrees of freedom of the F distribution * @param denominatorDf the denominator degrees of freedom of the F distribution * @return random value sampled from the F(numeratorDf, denominatorDf) distribution * @throws NotStrictlyPositiveException if * {@code numeratorDf <= 0} or {@code denominatorDf <= 0}. */ public double nextF(double numeratorDf, double denominatorDf) throws NotStrictlyPositiveException { return new FDistribution(getRan(), numeratorDf, denominatorDf, FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample(); } /** * {@inheritDoc} * * <p> * <strong>Algorithm Description</strong>: scales the output of * Random.nextDouble(), but rejects 0 values (i.e., will generate another * random double if Random.nextDouble() returns 0). This is necessary to * provide a symmetric output interval (both endpoints excluded). * </p> * @throws NumberIsTooLargeException if {@code lower >= upper} * @throws NotFiniteNumberException if one of the bounds is infinite * @throws NotANumberException if one of the bounds is NaN */ public double nextUniform(double lower, double upper) throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException { return nextUniform(lower, upper, false); } /** * {@inheritDoc} * * <p> * <strong>Algorithm Description</strong>: if the lower bound is excluded, * scales the output of Random.nextDouble(), but rejects 0 values (i.e., * will generate another random double if Random.nextDouble() returns 0). * This is necessary to provide a symmetric output interval (both * endpoints excluded). * </p> * * @throws NumberIsTooLargeException if {@code lower >= upper} * @throws NotFiniteNumberException if one of the bounds is infinite * @throws NotANumberException if one of the bounds is NaN */ public double nextUniform(double lower, double upper, boolean lowerInclusive) throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException { if (lower >= upper) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } if (Double.isInfinite(lower)) { throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, lower); } if (Double.isInfinite(upper)) { throw new NotFiniteNumberException(LocalizedFormats.INFINITE_BOUND, upper); } if (Double.isNaN(lower) || Double.isNaN(upper)) { throw new NotANumberException(); } final RandomGenerator generator = getRan(); // ensure nextDouble() isn't 0.0 double u = generator.nextDouble(); while (!lowerInclusive && u <= 0.0) { u = generator.nextDouble(); } return u * upper + (1.0 - u) * lower; } /** * {@inheritDoc} * * <p> * Uses a 2-cycle permutation shuffle. The shuffling process is described <a * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html"> * here</a>. * </p> * @throws NumberIsTooLargeException if {@code k > n}. * @throws NotStrictlyPositiveException if {@code k <= 0}. */ public int[] nextPermutation(int n, int k) throws NumberIsTooLargeException, NotStrictlyPositiveException { if (k > n) { throw new NumberIsTooLargeException(LocalizedFormats.PERMUTATION_EXCEEDS_N, k, n, true); } if (k <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.PERMUTATION_SIZE, k); } int[] index = getNatural(n); shuffle(index, n - k); int[] result = new int[k]; for (int i = 0; i < k; i++) { result[i] = index[n - i - 1]; } return result; } /** * {@inheritDoc} * * <p> * <strong>Algorithm Description</strong>: Uses a 2-cycle permutation * shuffle to generate a random permutation of <code>c.size()</code> and * then returns the elements whose indexes correspond to the elements of the * generated permutation. This technique is described, and proven to * generate random samples <a * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html"> * here</a> * </p> */ public Object[] nextSample(Collection<?> c, int k) throws NumberIsTooLargeException, NotStrictlyPositiveException { int len = c.size(); if (k > len) { throw new NumberIsTooLargeException(LocalizedFormats.SAMPLE_SIZE_EXCEEDS_COLLECTION_SIZE, k, len, true); } if (k <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SAMPLES, k); } Object[] objects = c.toArray(); int[] index = nextPermutation(len, k); Object[] result = new Object[k]; for (int i = 0; i < k; i++) { result[i] = objects[index[i]]; } return result; } /** * Reseeds the random number generator with the supplied seed. * <p> * Will create and initialize if null. * </p> * * @param seed the seed value to use */ public void reSeed(long seed) { getRan().setSeed(seed); } /** * Reseeds the secure random number generator with the current time in * milliseconds. * <p> * Will create and initialize if null. * </p> */ public void reSeedSecure() { getSecRan().setSeed(System.currentTimeMillis()); } /** * Reseeds the secure random number generator with the supplied seed. * <p> * Will create and initialize if null. * </p> * * @param seed the seed value to use */ public void reSeedSecure(long seed) { getSecRan().setSeed(seed); } /** * Reseeds the random number generator with * {@code System.currentTimeMillis() + System.identityHashCode(this))}. */ public void reSeed() { getRan().setSeed(System.currentTimeMillis() + System.identityHashCode(this)); } /** * Sets the PRNG algorithm for the underlying SecureRandom instance using * the Security Provider API. The Security Provider API is defined in <a * href = * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA"> * Java Cryptography Architecture API Specification & Reference.</a> * <p> * <strong>USAGE NOTE:</strong> This method carries <i>significant</i> * overhead and may take several seconds to execute. * </p> * * @param algorithm the name of the PRNG algorithm * @param provider the name of the provider * @throws NoSuchAlgorithmException if the specified algorithm is not available * @throws NoSuchProviderException if the specified provider is not installed */ public void setSecureAlgorithm(String algorithm, String provider) throws NoSuchAlgorithmException, NoSuchProviderException { secRand = SecureRandom.getInstance(algorithm, provider); } /** * Returns the RandomGenerator used to generate non-secure random data. * <p> * Creates and initializes a default generator if null. Uses a {@link Well19937c} * generator with {@code System.currentTimeMillis() + System.identityHashCode(this))} * as the default seed. * </p> * * @return the Random used to generate random data */ private RandomGenerator getRan() { if (rand == null) { initRan(); } return rand; } /** * Sets the default generator to a {@link Well19937c} generator seeded with * {@code System.currentTimeMillis() + System.identityHashCode(this))}. */ private void initRan() { rand = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this)); } /** * Returns the SecureRandom used to generate secure random data. * <p> * Creates and initializes if null. Uses * {@code System.currentTimeMillis() + System.identityHashCode(this)} as the default seed. * </p> * * @return the SecureRandom used to generate secure random data */ private SecureRandom getSecRan() { if (secRand == null) { secRand = new SecureRandom(); secRand.setSeed(System.currentTimeMillis() + System.identityHashCode(this)); } return secRand; } /** * Uses a 2-cycle permutation shuffle to randomly re-order the last elements * of list. * * @param list list to be shuffled * @param end element past which shuffling begins */ private void shuffle(int[] list, int end) { int target = 0; for (int i = list.length - 1; i >= end; i--) { if (i == 0) { target = 0; } else { // NumberIsTooLargeException cannot occur target = nextInt(0, i); } int temp = list[target]; list[target] = list[i]; list[i] = temp; } } /** * Returns an array representing n. * * @param n the natural number to represent * @return array with entries = elements of n */ private int[] getNatural(int n) { int[] natural = new int[n]; for (int i = 0; i < n; i++) { natural[i] = i; } return natural; } }