/* Copyright 2008-2010 Gephi Authors : Mathieu Bastian <mathieu.bastian@gephi.org> Website : http://www.gephi.org This file is part of Gephi. DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER. Copyright 2011 Gephi Consortium. All rights reserved. The contents of this file are subject to the terms of either the GNU General Public License Version 3 only ("GPL") or the Common Development and Distribution License("CDDL") (collectively, the "License"). You may not use this file except in compliance with the License. You can obtain a copy of the License at http://gephi.org/about/legal/license-notice/ or /cddl-1.0.txt and /gpl-3.0.txt. See the License for the specific language governing permissions and limitations under the License. When distributing the software, include this License Header Notice in each file and include the License files at /cddl-1.0.txt and /gpl-3.0.txt. If applicable, add the following below the License Header, with the fields enclosed by brackets [] replaced by your own identifying information: "Portions Copyrighted [year] [name of copyright owner]" If you wish your version of this file to be governed by only the CDDL or only the GPL Version 3, indicate your decision by adding "[Contributor] elects to include this software in this distribution under the [CDDL or GPL Version 3] license." If you do not indicate a single choice of license, a recipient has the option to distribute your version of this file under either the CDDL, the GPL Version 3 or to extend the choice of license to its licensees as provided above. However, if you add GPL Version 3 code and therefore, elected the GPL Version 3 license, then the option applies only if the new code is made subject to such option by the copyright holder. Contributor(s): Portions Copyrighted 2011 Gephi Consortium. */ package org.gephi.filters; import java.util.ArrayList; import java.util.Comparator; import java.util.List; import org.gephi.filters.api.Range; import org.gephi.filters.spi.*; import org.gephi.graph.api.*; /** * * @author Mathieu Bastian */ public class FilterProcessor { public Graph process(AbstractQueryImpl query, GraphModel graphModel) { List<GraphView> views = new ArrayList<GraphView>(); query = simplifyQuery(query); AbstractQueryImpl[] tree = getTree(query, true); for (int i = 0; i < tree.length; i++) { AbstractQueryImpl q = tree[tree.length - i - 1]; Graph[] input = new Graph[0]; if (q.getChildrenCount() > 0) { input = new Graph[q.getChildrenCount()]; for (int j = 0; j < input.length; j++) { input[j] = q.getChildAt(j).getResult(); } } else { //Leaves GraphView newView = graphModel.newView(); views.add(newView); input = new Graph[]{graphModel.getGraph(newView)}; //duplicate root } //PROCESS if (q instanceof OperatorQueryImpl && !((OperatorQueryImpl) q).isSimple()) { OperatorQueryImpl operatorQuery = (OperatorQueryImpl) q; Operator op = (Operator) operatorQuery.getFilter(); q.setResult(op.filter(input)); } else if (q instanceof OperatorQueryImpl && ((OperatorQueryImpl) q).isSimple()) { OperatorQueryImpl operatorQuery = (OperatorQueryImpl) q; Operator op = (Operator) operatorQuery.getFilter(); GraphView newView = graphModel.newView(); views.add(newView); Graph newGraph = graphModel.getGraph(newView); List<Filter> filters = new ArrayList<Filter>(); for (int k = 0; k < operatorQuery.getChildrenCount(); k++) { Filter filter = operatorQuery.getChildAt(k).getFilter(); if (init(filter, newGraph)) { filters.add(filter); } } q.setResult(op.filter(newGraph, filters.toArray(new Filter[0]))); } else { FilterQueryImpl filterQuery = (FilterQueryImpl) q; Filter filter = filterQuery.getFilter(); if (filter instanceof NodeFilter && filter instanceof EdgeFilter) { processNodeFilter((NodeFilter) filter, input[0]); processEdgeFilter((EdgeFilter) filter, input[0]); q.setResult(input[0]); } else if (filter instanceof NodeFilter) { processNodeFilter((NodeFilter) filter, input[0]); q.setResult(input[0]); } else if (filter instanceof EdgeFilter) { processEdgeFilter((EdgeFilter) filter, input[0]); q.setResult(input[0]); } else if (filter instanceof AttributableFilter) { processAttributableFilter((AttributableFilter) filter, input[0]); q.setResult(input[0]); } else if (filter instanceof ComplexFilter) { ComplexFilter cf = (ComplexFilter) filter; q.setResult(cf.filter(input[0])); } else { q.setResult(input[0]); //Put input as result, the filter don't do anything } } } Graph finalResult = tree[0].result; //Destroy intermediate views GraphView finalView = finalResult.getView(); for (GraphView v : views) { if (v != finalView) { graphModel.destroyView(v); } } return finalResult; } private void processAttributableFilter(AttributableFilter attributableFilter, Graph graph) { if (((AttributableFilter) attributableFilter).getType().equals(AttributableFilter.Type.NODE)) { if (init(attributableFilter, graph)) { List<Node> nodesToRemove = new ArrayList<Node>(); for (Node n : graph.getNodes()) { if (!attributableFilter.evaluate(graph, n)) { nodesToRemove.add(n); } } for (Node n : nodesToRemove) { graph.removeNode(n); } attributableFilter.finish(); } } else { HierarchicalGraph hgraph = (HierarchicalGraph) graph; if (init(attributableFilter, graph)) { List<Edge> edgesToRemove = new ArrayList<Edge>(); for (Edge e : hgraph.getEdges()) { if (!attributableFilter.evaluate(hgraph, e)) { edgesToRemove.add(e); } } for (Edge e : edgesToRemove) { hgraph.removeEdge(e); } edgesToRemove.clear(); for (Edge e : hgraph.getMetaEdges()) { if (!attributableFilter.evaluate(hgraph, e)) { edgesToRemove.add(e); } } for (Edge e : edgesToRemove) { hgraph.removeMetaEdge(e); } attributableFilter.finish(); } } } private void processNodeFilter(NodeFilter nodeFilter, Graph graph) { if (init(nodeFilter, graph)) { List<Node> nodesToRemove = new ArrayList<Node>(); for (Node n : graph.getNodes()) { if (!nodeFilter.evaluate(graph, n)) { nodesToRemove.add(n); } } for (Node n : nodesToRemove) { graph.removeNode(n); } nodeFilter.finish(); } } private void processEdgeFilter(EdgeFilter edgeFilter, Graph graph) { HierarchicalGraph hgraph = (HierarchicalGraph) graph; if (init(edgeFilter, graph)) { List<Edge> edgesToRemove = new ArrayList<Edge>(); for (Edge e : hgraph.getEdges()) { if (!edgeFilter.evaluate(hgraph, e)) { edgesToRemove.add(e); } } for (Edge e : edgesToRemove) { hgraph.removeEdge(e); } edgesToRemove.clear(); for (Edge e : hgraph.getMetaEdges()) { if (!edgeFilter.evaluate(hgraph, e)) { edgesToRemove.add(e); } } for (Edge e : edgesToRemove) { hgraph.removeMetaEdge(e); } edgeFilter.finish(); } } private AbstractQueryImpl simplifyQuery(AbstractQueryImpl query) { AbstractQueryImpl copy = query.copy(); for (AbstractQueryImpl q : getTree(copy, false)) { if (q instanceof OperatorQueryImpl && q.getChildrenCount() > 0) { boolean canSimplify = true; for (AbstractQueryImpl child : q.children) { if (child.getChildrenCount() > 0 || !(child.getFilter() instanceof NodeFilter || child.getFilter() instanceof EdgeFilter || child.getFilter() instanceof AttributableFilter)) { canSimplify = false; } } if (canSimplify) { ((OperatorQueryImpl) q).setSimple(true); } } } return copy; } private AbstractQueryImpl[] getTree(AbstractQueryImpl query, boolean ignoreSimple) { ArrayList<AbstractQueryImpl> tree = new ArrayList<AbstractQueryImpl>(); int pointer = 0; tree.add(query); while (pointer < tree.size()) { AbstractQueryImpl q = tree.get(pointer++); if (q.children.size() > 0) { if (!(q instanceof OperatorQueryImpl && ((OperatorQueryImpl) q).isSimple())) { tree.addAll(q.children); } } } return tree.toArray(new AbstractQueryImpl[0]); } public boolean init(Filter filter, Graph graph) { boolean res = true; //Init res if (filter instanceof NodeFilter) { res = ((NodeFilter) filter).init(graph); } else if (filter instanceof EdgeFilter) { res = ((EdgeFilter) filter).init(graph); } else if (filter instanceof NodeFilter) { res = ((AttributableFilter) filter).init(graph); } //Range if (filter instanceof RangeFilter) { RangeFilter rangeFilter = (RangeFilter) filter; Number[] values = rangeFilter.getValues(graph); NumberComparator comparator = new NumberComparator(); Number min = null; Number max = null; if (values != null) { for (Number n : values) { min = min == null ? n : comparator.min(min, n); max = max == null ? n : comparator.max(max, n); } } Range previousRange = (Range) rangeFilter.getRangeProperty().getValue(); Range newRange; if (min == null || max == null) { newRange = null; rangeFilter.getRangeProperty().setValue(newRange); } else { if (previousRange == null) { newRange = new Range(min, max, min, max, values); rangeFilter.getRangeProperty().setValue(newRange); } else if(previousRange != null && (previousRange.getMinimum() == null || previousRange.getMaximum() == null)) { //Opening projects newRange = new Range(previousRange.getLowerBound(), previousRange.getUpperBound(), min, max, previousRange.isLeftInclusive(), previousRange.isRightInclusive(), values); rangeFilter.getRangeProperty().setValue(newRange); } else { //Collect some info boolean stickyLeft = previousRange.getMinimum().equals(previousRange.getLowerBound()); boolean stickyRight = previousRange.getMaximum().equals(previousRange.getUpperBound()); Number lowerBound = previousRange.getLowerBound(); Number upperBound = previousRange.getUpperBound(); //The inteval grows on the right if (stickyRight && comparator.superior(max, upperBound)) { upperBound = max; } //The interval grows on the left if (stickyLeft && comparator.inferior(min, lowerBound)) { lowerBound = min; } //The interval shrinks on the right if (comparator.superior(upperBound, max)) { upperBound = max; } //The interval shrinks on the left if (comparator.inferior(lowerBound, min)) { lowerBound = min; } newRange = new Range(lowerBound, upperBound, min, max, previousRange.isLeftInclusive(), previousRange.isRightInclusive(), values); if (!newRange.equals(previousRange)) { rangeFilter.getRangeProperty().setValue(newRange); } } } } return res; } private static class NumberComparator implements Comparator<Number> { public boolean superior(Number a, Number b) { return compare(a, b) > 0; } public boolean inferior(Number a, Number b) { return compare(a, b) < 0; } public Number min(Number a, Number b) { int c = compare(a, b); return c < 0 ? a : b; } public Number max(Number a, Number b) { int c = compare(a, b); return c > 0 ? a : b; } public int compare(Number number1, Number number2) { if (((Object) number2).getClass().equals(((Object) number1).getClass())) { if (number1 instanceof Comparable) { return ((Comparable) number1).compareTo(number2); } } // for all different Number types, let's check there double values if (number1.doubleValue() < number2.doubleValue()) { return -1; } if (number1.doubleValue() > number2.doubleValue()) { return 1; } return 0; } } }