/* (c) 2014 LinkedIn Corp. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use
* this file except in compliance with the License. You may obtain a copy of the
* License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed
* under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied.
*/
package com.linkedin.cubert.operator.aggregate;
import java.io.IOException;
import org.apache.pig.data.Tuple;
import org.codehaus.jackson.JsonNode;
import com.linkedin.cubert.block.Block;
import com.linkedin.cubert.block.BlockSchema;
import com.linkedin.cubert.block.DataType;
import com.linkedin.cubert.operator.PreconditionException;
import com.linkedin.cubert.operator.PreconditionExceptionType;
import com.linkedin.cubert.utils.JsonUtils;
public class BitwiseORAggregation implements AggregationFunction
{
private long bitmap;
private int inputColumnIndex;
private int outputColumnIndex;
private boolean nonNullValueSeen = false;
private DataType inputType;
@Override
public void setup(Block block, BlockSchema outputSchema, JsonNode json) throws IOException
{
BlockSchema inputSchema = block.getProperties().getSchema();
String inputColumnName = JsonUtils.asArray(json, "input")[0];
inputColumnIndex = inputSchema.getIndex(inputColumnName);
inputType = inputSchema.getType(inputSchema.getIndex(inputColumnName));
String outputColumnName = JsonUtils.getText(json, "output");
outputColumnIndex = outputSchema.getIndex(outputColumnName);
resetState();
}
@Override
public void resetState()
{
bitmap = 0;
nonNullValueSeen = false;
}
@Override
public void aggregate(Tuple input) throws IOException
{
Object obj = input.get(inputColumnIndex);
if (obj == null)
return;
nonNullValueSeen = true;
long value = ((Number) (input.get(inputColumnIndex))).longValue();
bitmap |= value;
}
@Override
public void output(Tuple output) throws IOException
{
if (nonNullValueSeen) {
if (inputType == DataType.INT){
output.set(outputColumnIndex, (Integer) ((int) bitmap));
}
else
output.set(outputColumnIndex, bitmap);
}
else
output.set(outputColumnIndex, null);
resetState();
}
@Override
public void resetTuple(Tuple output) throws IOException
{
output.set(outputColumnIndex, 0);
}
@Override
public BlockSchema outputSchema(BlockSchema inputSchema, JsonNode json) throws PreconditionException
{
String[] inputColNames = JsonUtils.asArray(json, "input");
if (inputColNames.length != 1)
throw new PreconditionException(PreconditionExceptionType.INVALID_CONFIG,
"Only one column expected for BITWISE_OR. Found: "
+ JsonUtils.get(json, "input"));
String inputColName = inputColNames[0];
if (!inputSchema.hasIndex(inputColName))
throw new PreconditionException(PreconditionExceptionType.COLUMN_NOT_PRESENT,
inputColName);
String outputColName = JsonUtils.getText(json, "output");
inputType = inputSchema.getType(inputSchema.getIndex(inputColName));
if (inputType != DataType.INT && inputType != DataType.LONG)
throw new PreconditionException(PreconditionExceptionType.INVALID_SCHEMA,
"Expected type of column " + inputColName
+ " is INT OR LONG. Found: " + inputType);
return new BlockSchema(inputType + " " + outputColName);
}
}