/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.analysis.interpolation; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.apache.commons.math3.util.FastMath; import org.apache.commons.math3.analysis.TrivariateFunction; import org.junit.Assert; import org.junit.Test; /** * Test case for the bicubic function. * */ public final class TricubicSplineInterpolatingFunctionTest { /** * Test preconditions. */ @Test public void testPreconditions() { double[] xval = new double[] {3, 4, 5, 6.5}; double[] yval = new double[] {-4, -3, -1, 2.5}; double[] zval = new double[] {-12, -8, -5.5, -3, 0, 2.5}; double[][][] fval = new double[xval.length][yval.length][zval.length]; @SuppressWarnings("unused") TrivariateFunction tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, fval, fval, fval); double[] wxval = new double[] {3, 2, 5, 6.5}; try { tcf = new TricubicSplineInterpolatingFunction(wxval, yval, zval, fval, fval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (MathIllegalArgumentException e) { // Expected } double[] wyval = new double[] {-4, -1, -1, 2.5}; try { tcf = new TricubicSplineInterpolatingFunction(xval, wyval, zval, fval, fval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (MathIllegalArgumentException e) { // Expected } double[] wzval = new double[] {-12, -8, -9, -3, 0, 2.5}; try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, wzval, fval, fval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (MathIllegalArgumentException e) { // Expected } double[][][] wfval = new double[xval.length - 1][yval.length - 1][zval.length]; try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, wfval, fval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, wfval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, wfval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, wfval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, wfval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, wfval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, fval, wfval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, fval, fval, wfval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } wfval = new double[xval.length][yval.length - 1][zval.length]; try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, wfval, fval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, wfval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, wfval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, wfval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, wfval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, wfval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, fval, wfval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, fval, fval, wfval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } wfval = new double[xval.length][yval.length][zval.length - 1]; try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, wfval, fval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, wfval, fval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, wfval, fval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, wfval, fval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, wfval, fval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, wfval, fval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, fval, wfval, fval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } try { tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, fval, fval, fval, fval, fval, fval, wfval); Assert.fail("an exception should have been thrown"); } catch (DimensionMismatchException e) { // Expected } } /** * Test for a plane. * <p> * f(x, y, z) = 2 x - 3 y - 4 z + 5 * </p> */ @Test public void testPlane() { double[] xval = new double[] {3, 4, 5, 6.5}; double[] yval = new double[] {-4, -3, -1, 2, 2.5}; double[] zval = new double[] {-12, -8, -5.5, -3, 0, 2.5}; // Function values TrivariateFunction f = new TrivariateFunction() { public double value(double x, double y, double z) { return 2 * x - 3 * y - 4 * z + 5; } }; double[][][] fval = new double[xval.length][yval.length][zval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { fval[i][j][k] = f.value(xval[i], yval[j], zval[k]); } } } // Partial derivatives with respect to x double[][][] dFdX = new double[xval.length][yval.length][zval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { dFdX[i][j][k] = 2; } } } // Partial derivatives with respect to y double[][][] dFdY = new double[xval.length][yval.length][zval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { dFdY[i][j][k] = -3; } } } // Partial derivatives with respect to z double[][][] dFdZ = new double[xval.length][yval.length][zval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { dFdZ[i][j][k] = -4; } } } // Partial cross-derivatives double[][][] d2FdXdY = new double[xval.length][yval.length][zval.length]; double[][][] d2FdXdZ = new double[xval.length][yval.length][zval.length]; double[][][] d2FdYdZ = new double[xval.length][yval.length][zval.length]; double[][][] d3FdXdYdZ = new double[xval.length][yval.length][zval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { d2FdXdY[i][j][k] = 0; d2FdXdZ[i][j][k] = 0; d2FdYdZ[i][j][k] = 0; d3FdXdYdZ[i][j][k] = 0; } } } TrivariateFunction tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, dFdX, dFdY, dFdZ, d2FdXdY, d2FdXdZ, d2FdYdZ, d3FdXdYdZ); double x, y, z; double expected, result; x = 4; y = -3; z = 0; expected = f.value(x, y, z); result = tcf.value(x, y, z); Assert.assertEquals("On sample point", expected, result, 1e-15); x = 4.5; y = -1.5; z = -4.25; expected = f.value(x, y, z); result = tcf.value(x, y, z); Assert.assertEquals("Half-way between sample points (middle of the patch)", expected, result, 0.3); x = 3.5; y = -3.5; z = -10; expected = f.value(x, y, z); result = tcf.value(x, y, z); Assert.assertEquals("Half-way between sample points (border of the patch)", expected, result, 0.3); } /** * Sine wave. * <p> * f(x, y, z) = a cos [ω z - k<sub>y</sub> x - k<sub>y</sub> y] * </p> * with A = 0.2, ω = 0.5, k<sub>x</sub> = 2, k<sub>y</sub> = 1. */ @Test public void testWave() { double[] xval = new double[] {3, 4, 5, 6.5}; double[] yval = new double[] {-4, -3, -1, 2, 2.5}; double[] zval = new double[] {-12, -8, -5.5, -3, 0, 4}; final double a = 0.2; final double omega = 0.5; final double kx = 2; final double ky = 1; // Function values TrivariateFunction f = new TrivariateFunction() { public double value(double x, double y, double z) { return a * FastMath.cos(omega * z - kx * x - ky * y); } }; double[][][] fval = new double[xval.length][yval.length][zval.length]; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { fval[i][j][k] = f.value(xval[i], yval[j], zval[k]); } } } // Partial derivatives with respect to x double[][][] dFdX = new double[xval.length][yval.length][zval.length]; TrivariateFunction dFdX_f = new TrivariateFunction() { public double value(double x, double y, double z) { return a * FastMath.sin(omega * z - kx * x - ky * y) * kx; } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { dFdX[i][j][k] = dFdX_f.value(xval[i], yval[j], zval[k]); } } } // Partial derivatives with respect to y double[][][] dFdY = new double[xval.length][yval.length][zval.length]; TrivariateFunction dFdY_f = new TrivariateFunction() { public double value(double x, double y, double z) { return a * FastMath.sin(omega * z - kx * x - ky * y) * ky; } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { dFdY[i][j][k] = dFdY_f.value(xval[i], yval[j], zval[k]); } } } // Partial derivatives with respect to z double[][][] dFdZ = new double[xval.length][yval.length][zval.length]; TrivariateFunction dFdZ_f = new TrivariateFunction() { public double value(double x, double y, double z) { return -a * FastMath.sin(omega * z - kx * x - ky * y) * omega; } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { dFdZ[i][j][k] = dFdZ_f.value(xval[i], yval[j], zval[k]); } } } // Partial second derivatives w.r.t. (x, y) double[][][] d2FdXdY = new double[xval.length][yval.length][zval.length]; TrivariateFunction d2FdXdY_f = new TrivariateFunction() { public double value(double x, double y, double z) { return -a * FastMath.cos(omega * z - kx * x - ky * y) * kx * ky; } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { d2FdXdY[i][j][k] = d2FdXdY_f.value(xval[i], yval[j], zval[k]); } } } // Partial second derivatives w.r.t. (x, z) double[][][] d2FdXdZ = new double[xval.length][yval.length][zval.length]; TrivariateFunction d2FdXdZ_f = new TrivariateFunction() { public double value(double x, double y, double z) { return a * FastMath.cos(omega * z - kx * x - ky * y) * kx * omega; } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { d2FdXdZ[i][j][k] = d2FdXdZ_f.value(xval[i], yval[j], zval[k]); } } } // Partial second derivatives w.r.t. (y, z) double[][][] d2FdYdZ = new double[xval.length][yval.length][zval.length]; TrivariateFunction d2FdYdZ_f = new TrivariateFunction() { public double value(double x, double y, double z) { return a * FastMath.cos(omega * z - kx * x - ky * y) * ky * omega; } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { d2FdYdZ[i][j][k] = d2FdYdZ_f.value(xval[i], yval[j], zval[k]); } } } // Partial third derivatives double[][][] d3FdXdYdZ = new double[xval.length][yval.length][zval.length]; TrivariateFunction d3FdXdYdZ_f = new TrivariateFunction() { public double value(double x, double y, double z) { return a * FastMath.sin(omega * z - kx * x - ky * y) * kx * ky * omega; } }; for (int i = 0; i < xval.length; i++) { for (int j = 0; j < yval.length; j++) { for (int k = 0; k < zval.length; k++) { d3FdXdYdZ[i][j][k] = d3FdXdYdZ_f.value(xval[i], yval[j], zval[k]); } } } TrivariateFunction tcf = new TricubicSplineInterpolatingFunction(xval, yval, zval, fval, dFdX, dFdY, dFdZ, d2FdXdY, d2FdXdZ, d2FdYdZ, d3FdXdYdZ); double x, y, z; double expected, result; x = 4; y = -3; z = 0; expected = f.value(x, y, z); result = tcf.value(x, y, z); Assert.assertEquals("On sample point", expected, result, 1e-14); x = 4.5; y = -1.5; z = -4.25; expected = f.value(x, y, z); result = tcf.value(x, y, z); Assert.assertEquals("Half-way between sample points (middle of the patch)", expected, result, 0.1); x = 3.5; y = -3.5; z = -10; expected = f.value(x, y, z); result = tcf.value(x, y, z); Assert.assertEquals("Half-way between sample points (border of the patch)", expected, result, 0.1); } }