/** * Copyright (c) 2016-present, RxJava Contributors. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See * the License for the specific language governing permissions and limitations under the License. */ package io.reactivex.flowable; import static org.junit.Assert.*; import java.util.List; import java.util.concurrent.*; import java.util.concurrent.atomic.*; import org.junit.*; import org.junit.rules.TestName; import org.reactivestreams.*; import io.reactivex.Flowable; import io.reactivex.exceptions.MissingBackpressureException; import io.reactivex.functions.*; import io.reactivex.internal.subscriptions.SubscriptionHelper; import io.reactivex.internal.util.BackpressureHelper; import io.reactivex.schedulers.Schedulers; import io.reactivex.subscribers.*; public class FlowableBackpressureTests { static final class FirehoseNoBackpressure extends AtomicBoolean implements Subscription { private static final long serialVersionUID = -669931580197884015L; final Subscriber<? super Integer> s; private final AtomicInteger counter; volatile boolean cancelled; private FirehoseNoBackpressure(AtomicInteger counter, Subscriber<? super Integer> s) { this.counter = counter; this.s = s; } @Override public void request(long n) { if (!SubscriptionHelper.validate(n)) { return; } if (compareAndSet(false, true)) { int i = 0; final Subscriber<? super Integer> a = s; final AtomicInteger c = counter; while (!cancelled) { a.onNext(i++); c.incrementAndGet(); } System.out.println("unsubscribed after: " + i); } } @Override public void cancel() { cancelled = true; } } @Rule public TestName testName = new TestName(); @After public void doAfterTest() { // FIXME LATER // TestObstructionDetection.checkObstruction(); } @Test public void testObserveOn() { int NUM = (int) (Flowable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); incrementingIntegers(c).observeOn(Schedulers.computation()).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testObserveOn => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); assertTrue(c.get() < Flowable.bufferSize() * 4); } @Test public void testObserveOnWithSlowConsumer() { int NUM = (int) (Flowable.bufferSize() * 0.2); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); incrementingIntegers(c).observeOn(Schedulers.computation()).map( new Function<Integer, Integer>() { @Override public Integer apply(Integer i) { try { Thread.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } return i; } } ).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testObserveOnWithSlowConsumer => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); assertTrue(c.get() < Flowable.bufferSize() * 2); } @Test public void testMergeSync() { int NUM = (int) (Flowable.bufferSize() * 4.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); Flowable<Integer> merged = Flowable.merge(incrementingIntegers(c1), incrementingIntegers(c2)); merged.take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("Expected: " + NUM + " got: " + ts.valueCount()); System.out.println("testMergeSync => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); // either one can starve the other, but neither should be capable of doing more than 5 batches (taking 4.1) // TODO is it possible to make this deterministic rather than one possibly starving the other? // benjchristensen => In general I'd say it's not worth trying to make it so, as "fair" algoritms generally take a performance hit assertTrue(c1.get() < Flowable.bufferSize() * 5); assertTrue(c2.get() < Flowable.bufferSize() * 5); } @Test public void testMergeAsync() { int NUM = (int) (Flowable.bufferSize() * 4.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); Flowable<Integer> merged = Flowable.merge( incrementingIntegers(c1).subscribeOn(Schedulers.computation()), incrementingIntegers(c2).subscribeOn(Schedulers.computation())); merged.take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testMergeAsync => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); // either one can starve the other, but neither should be capable of doing more than 5 batches (taking 4.1) // TODO is it possible to make this deterministic rather than one possibly starving the other? // benjchristensen => In general I'd say it's not worth trying to make it so, as "fair" algoritms generally take a performance hit int max = Flowable.bufferSize() * 7; assertTrue("" + c1.get() + " >= " + max, c1.get() < max); assertTrue("" + c2.get() + " >= " + max, c2.get() < max); } @Test public void testMergeAsyncThenObserveOnLoop() { for (int i = 0; i < 500; i++) { if (i % 10 == 0) { System.out.println("testMergeAsyncThenObserveOnLoop >> " + i); } // Verify there is no MissingBackpressureException int NUM = (int) (Flowable.bufferSize() * 4.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); Flowable<Integer> merged = Flowable.merge( incrementingIntegers(c1).subscribeOn(Schedulers.computation()), incrementingIntegers(c2).subscribeOn(Schedulers.computation())); merged .observeOn(Schedulers.io()) .take(NUM) .subscribe(ts); ts.awaitTerminalEvent(5, TimeUnit.SECONDS); ts.assertComplete(); ts.assertNoErrors(); System.out.println("testMergeAsyncThenObserveOn => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); } } @Test public void testMergeAsyncThenObserveOn() { int NUM = (int) (Flowable.bufferSize() * 4.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); Flowable<Integer> merged = Flowable.merge( incrementingIntegers(c1).subscribeOn(Schedulers.computation()), incrementingIntegers(c2).subscribeOn(Schedulers.computation())); merged.observeOn(Schedulers.newThread()).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testMergeAsyncThenObserveOn => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); // either one can starve the other, but neither should be capable of doing more than 5 batches (taking 4.1) // TODO is it possible to make this deterministic rather than one possibly starving the other? // benjchristensen => In general I'd say it's not worth trying to make it so, as "fair" algoritms generally take a performance hit // akarnokd => run this in a loop over 10k times and never saw values get as high as 7*SIZE, but since observeOn delays the unsubscription non-deterministically, the test will remain unreliable assertTrue(c1.get() < Flowable.bufferSize() * 7); assertTrue(c2.get() < Flowable.bufferSize() * 7); } @Test public void testFlatMapSync() { int NUM = (int) (Flowable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); incrementingIntegers(c) .flatMap(new Function<Integer, Publisher<Integer>>() { @Override public Publisher<Integer> apply(Integer i) { return incrementingIntegers(new AtomicInteger()).take(10); } }) .take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testFlatMapSync => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); // expect less than 1 buffer since the flatMap is emitting 10 each time, so it is NUM/10 that will be taken. assertTrue(c.get() < Flowable.bufferSize()); } @Test @Ignore("The test is non-deterministic and can't be made deterministic") public void testFlatMapAsync() { int NUM = (int) (Flowable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); incrementingIntegers(c) .subscribeOn(Schedulers.computation()) .flatMap(new Function<Integer, Publisher<Integer>>() { @Override public Publisher<Integer> apply(Integer i) { return incrementingIntegers(new AtomicInteger()) .take(10) .subscribeOn(Schedulers.computation()); } } ) .take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testFlatMapAsync => Received: " + ts.valueCount() + " Emitted: " + c.get() + " Size: " + Flowable.bufferSize()); assertEquals(NUM, ts.valueCount()); // even though we only need 10, it will request at least Flowable.bufferSize(), and then as it drains keep requesting more // and then it will be non-deterministic when the take() causes the unsubscribe as it is scheduled on 10 different schedulers (threads) // normally this number is ~250 but can get up to ~1200 when Flowable.bufferSize() == 1024 assertTrue(c.get() <= Flowable.bufferSize() * 2); } @Test public void testZipSync() { int NUM = (int) (Flowable.bufferSize() * 4.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); Flowable<Integer> zipped = Flowable.zip( incrementingIntegers(c1), incrementingIntegers(c2), new BiFunction<Integer, Integer, Integer>() { @Override public Integer apply(Integer t1, Integer t2) { return t1 + t2; } }); zipped.take(NUM) .subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testZipSync => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); assertTrue(c1.get() < Flowable.bufferSize() * 7); assertTrue(c2.get() < Flowable.bufferSize() * 7); } @Test public void testZipAsync() { int NUM = (int) (Flowable.bufferSize() * 2.1); AtomicInteger c1 = new AtomicInteger(); AtomicInteger c2 = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); Flowable<Integer> zipped = Flowable.zip( incrementingIntegers(c1).subscribeOn(Schedulers.computation()), incrementingIntegers(c2).subscribeOn(Schedulers.computation()), new BiFunction<Integer, Integer, Integer>() { @Override public Integer apply(Integer t1, Integer t2) { return t1 + t2; } }); zipped.take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testZipAsync => Received: " + ts.valueCount() + " Emitted: " + c1.get() + " / " + c2.get()); assertEquals(NUM, ts.valueCount()); int max = Flowable.bufferSize() * 5; assertTrue("" + c1.get() + " >= " + max, c1.get() < max); assertTrue("" + c2.get() + " >= " + max, c2.get() < max); } @Test public void testSubscribeOnScheduling() { // in a loop for repeating the concurrency in this to increase chance of failure for (int i = 0; i < 100; i++) { int NUM = (int) (Flowable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); ConcurrentLinkedQueue<Thread> threads = new ConcurrentLinkedQueue<Thread>(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); // observeOn is there to make it async and need backpressure incrementingIntegers(c, threads).subscribeOn(Schedulers.computation()).observeOn(Schedulers.computation()).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testSubscribeOnScheduling => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); assertTrue(c.get() < Flowable.bufferSize() * 4); Thread first = null; for (Thread t : threads) { System.out.println("testSubscribeOnScheduling => thread: " + t); if (first == null) { first = t; } else { if (!first.equals(t)) { fail("Expected to see the same thread"); } } } System.out.println("testSubscribeOnScheduling => Number of batch requests seen: " + threads.size()); assertTrue(threads.size() > 1); System.out.println("-------------------------------------------------------------------------------------------"); } } @Test public void testTakeFilterSkipChainAsync() { int NUM = (int) (Flowable.bufferSize() * 2.1); AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); incrementingIntegers(c).observeOn(Schedulers.computation()) .skip(10000) .filter(new Predicate<Integer>() { @Override public boolean test(Integer i) { return i > 11000; } }).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); // emit 10000 that are skipped // emit next 1000 that are filtered out // take NUM // so emitted is at least 10000+1000+NUM + extra for buffer size/threshold int expected = 10000 + 1000 + Flowable.bufferSize() * 3 + Flowable.bufferSize() / 2; System.out.println("testTakeFilterSkipChain => Received: " + ts.valueCount() + " Emitted: " + c.get() + " Expected: " + expected); assertEquals(NUM, ts.valueCount()); assertTrue(c.get() < expected); } @Test public void testUserSubscriberUsingRequestSync() { AtomicInteger c = new AtomicInteger(); final AtomicInteger totalReceived = new AtomicInteger(); final AtomicInteger batches = new AtomicInteger(); final AtomicInteger received = new AtomicInteger(); incrementingIntegers(c).subscribe(new ResourceSubscriber<Integer>() { @Override public void onStart() { request(100); } @Override public void onComplete() { } @Override public void onError(Throwable e) { } @Override public void onNext(Integer t) { int total = totalReceived.incrementAndGet(); received.incrementAndGet(); if (total >= 2000) { dispose(); } if (received.get() == 100) { batches.incrementAndGet(); request(100); received.set(0); } } }); System.out.println("testUserSubscriberUsingRequestSync => Received: " + totalReceived.get() + " Emitted: " + c.get() + " Request Batches: " + batches.get()); assertEquals(2000, c.get()); assertEquals(2000, totalReceived.get()); assertEquals(20, batches.get()); } @Test public void testUserSubscriberUsingRequestAsync() throws InterruptedException { AtomicInteger c = new AtomicInteger(); final AtomicInteger totalReceived = new AtomicInteger(); final AtomicInteger received = new AtomicInteger(); final AtomicInteger batches = new AtomicInteger(); final CountDownLatch latch = new CountDownLatch(1); incrementingIntegers(c).subscribeOn(Schedulers.newThread()).subscribe( new ResourceSubscriber<Integer>() { @Override public void onStart() { request(100); } @Override public void onComplete() { latch.countDown(); } @Override public void onError(Throwable e) { latch.countDown(); } @Override public void onNext(Integer t) { int total = totalReceived.incrementAndGet(); received.incrementAndGet(); boolean done = false; if (total >= 2000) { done = true; dispose(); } if (received.get() == 100) { batches.incrementAndGet(); received.set(0); if (!done) { request(100); } } if (done) { latch.countDown(); } } }); latch.await(); System.out.println("testUserSubscriberUsingRequestAsync => Received: " + totalReceived.get() + " Emitted: " + c.get() + " Request Batches: " + batches.get()); assertEquals(2000, c.get()); assertEquals(2000, totalReceived.get()); assertEquals(20, batches.get()); } @Test(timeout = 2000) public void testFirehoseFailsAsExpected() { AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); firehose(c).observeOn(Schedulers.computation()) .map(new Function<Integer, Integer>() { @Override public Integer apply(Integer v) { try { Thread.sleep(10); } catch (Exception e) { e.printStackTrace(); } return v; } }) .subscribe(ts); ts.awaitTerminalEvent(); System.out.println("testFirehoseFailsAsExpected => Received: " + ts.valueCount() + " Emitted: " + c.get()); // FIXME it is possible slow is not slow enough or the main gets delayed and thus more than one source value is emitted. int vc = ts.valueCount(); assertTrue("10 < " + vc, vc <= 10); ts.assertError(MissingBackpressureException.class); } @Test public void testFirehoseFailsAsExpectedLoop() { for (int i = 0; i < 100; i++) { testFirehoseFailsAsExpected(); } } @Test(timeout = 10000) public void testOnBackpressureDrop() { long t = System.currentTimeMillis(); for (int i = 0; i < 100; i++) { // stop the test if we are getting close to the timeout because slow machines // may not get through 100 iterations if (System.currentTimeMillis() - t > TimeUnit.SECONDS.toMillis(9)) { break; } int NUM = (int) (Flowable.bufferSize() * 1.1); // > 1 so that take doesn't prevent buffer overflow AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); firehose(c).onBackpressureDrop() .observeOn(Schedulers.computation()) .map(SLOW_PASS_THRU).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); List<Integer> onNextEvents = ts.values(); assertEquals(NUM, onNextEvents.size()); Integer lastEvent = onNextEvents.get(NUM - 1); System.out.println("testOnBackpressureDrop => Received: " + onNextEvents.size() + " Emitted: " + c.get() + " Last value: " + lastEvent); // it drop, so we should get some number far higher than what would have sequentially incremented assertTrue(NUM - 1 <= lastEvent.intValue()); } } @Test(timeout = 20000) public void testOnBackpressureDropWithAction() { for (int i = 0; i < 100; i++) { final AtomicInteger emitCount = new AtomicInteger(); final AtomicInteger dropCount = new AtomicInteger(); final AtomicInteger passCount = new AtomicInteger(); final int NUM = Flowable.bufferSize() * 3; // > 1 so that take doesn't prevent buffer overflow TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); firehose(emitCount) .onBackpressureDrop(new Consumer<Integer>() { @Override public void accept(Integer v) { dropCount.incrementAndGet(); } }) .doOnNext(new Consumer<Integer>() { @Override public void accept(Integer v) { passCount.incrementAndGet(); } }) .observeOn(Schedulers.computation()) .map(SLOW_PASS_THRU) .take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); List<Integer> onNextEvents = ts.values(); Integer lastEvent = onNextEvents.get(NUM - 1); System.out.println(testName.getMethodName() + " => Received: " + onNextEvents.size() + " Passed: " + passCount.get() + " Dropped: " + dropCount.get() + " Emitted: " + emitCount.get() + " Last value: " + lastEvent); assertEquals(NUM, onNextEvents.size()); // in reality, NUM < passCount assertTrue(NUM <= passCount.get()); // it drop, so we should get some number far higher than what would have sequentially incremented assertTrue(NUM - 1 <= lastEvent.intValue()); assertTrue(0 < dropCount.get()); assertEquals(emitCount.get(), passCount.get() + dropCount.get()); } } @Test(timeout = 10000) public void testOnBackpressureDropSynchronous() { for (int i = 0; i < 100; i++) { int NUM = (int) (Flowable.bufferSize() * 1.1); // > 1 so that take doesn't prevent buffer overflow AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); firehose(c).onBackpressureDrop() .map(SLOW_PASS_THRU).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); List<Integer> onNextEvents = ts.values(); assertEquals(NUM, onNextEvents.size()); Integer lastEvent = onNextEvents.get(NUM - 1); System.out.println("testOnBackpressureDrop => Received: " + onNextEvents.size() + " Emitted: " + c.get() + " Last value: " + lastEvent); // it drop, so we should get some number far higher than what would have sequentially incremented assertTrue(NUM - 1 <= lastEvent.intValue()); } } @Test(timeout = 10000) public void testOnBackpressureDropSynchronousWithAction() { for (int i = 0; i < 100; i++) { final AtomicInteger dropCount = new AtomicInteger(); int NUM = (int) (Flowable.bufferSize() * 1.1); // > 1 so that take doesn't prevent buffer overflow AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); firehose(c).onBackpressureDrop(new Consumer<Integer>() { @Override public void accept(Integer j) { dropCount.incrementAndGet(); } }) .map(SLOW_PASS_THRU).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); List<Integer> onNextEvents = ts.values(); assertEquals(NUM, onNextEvents.size()); Integer lastEvent = onNextEvents.get(NUM - 1); System.out.println("testOnBackpressureDrop => Received: " + onNextEvents.size() + " Dropped: " + dropCount.get() + " Emitted: " + c.get() + " Last value: " + lastEvent); // it drop, so we should get some number far higher than what would have sequentially incremented assertTrue(NUM - 1 <= lastEvent.intValue()); // no drop in synchronous mode assertEquals(0, dropCount.get()); assertEquals(c.get(), onNextEvents.size()); } } @Test(timeout = 2000) public void testOnBackpressureBuffer() { int NUM = (int) (Flowable.bufferSize() * 1.1); // > 1 so that take doesn't prevent buffer overflow AtomicInteger c = new AtomicInteger(); TestSubscriber<Integer> ts = new TestSubscriber<Integer>(); firehose(c).takeWhile(new Predicate<Integer>() { @Override public boolean test(Integer t1) { return t1 < 100000; } }) .onBackpressureBuffer() .observeOn(Schedulers.computation()) .map(SLOW_PASS_THRU).take(NUM).subscribe(ts); ts.awaitTerminalEvent(); ts.assertNoErrors(); System.out.println("testOnBackpressureBuffer => Received: " + ts.valueCount() + " Emitted: " + c.get()); assertEquals(NUM, ts.valueCount()); // it buffers, so we should get the right value sequentially assertEquals(NUM - 1, ts.values().get(NUM - 1).intValue()); } /** * A synchronous Observable that will emit incrementing integers as requested. * * @param counter * @return */ private static Flowable<Integer> incrementingIntegers(final AtomicInteger counter) { return incrementingIntegers(counter, null); } private static Flowable<Integer> incrementingIntegers(final AtomicInteger counter, final ConcurrentLinkedQueue<Thread> threadsSeen) { return Flowable.unsafeCreate(new Publisher<Integer>() { @Override public void subscribe(final Subscriber<? super Integer> s) { s.onSubscribe(new Subscription() { int i; volatile boolean cancelled; final AtomicLong requested = new AtomicLong(); @Override public void request(long n) { if (!SubscriptionHelper.validate(n)) { return; } if (threadsSeen != null) { threadsSeen.offer(Thread.currentThread()); } long _c = BackpressureHelper.add(requested, n); if (_c == 0) { while (!cancelled) { counter.incrementAndGet(); s.onNext(i++); if (requested.decrementAndGet() == 0) { // we're done emitting the number requested so return return; } } } } @Override public void cancel() { cancelled = true; } }); } }); } /** * Incrementing int without backpressure. * * @param counter * @return */ private static Flowable<Integer> firehose(final AtomicInteger counter) { return Flowable.unsafeCreate(new Publisher<Integer>() { @Override public void subscribe(Subscriber<? super Integer> s) { Subscription s2 = new FirehoseNoBackpressure(counter, s); s.onSubscribe(s2); } }); } static final Function<Integer, Integer> SLOW_PASS_THRU = new Function<Integer, Integer>() { volatile int sink; @Override public Integer apply(Integer t1) { // be slow ... but faster than Thread.sleep(1) String t = ""; int s = sink; for (int i = 2000; i >= 0; i--) { t = String.valueOf(i + t.hashCode() + s); } sink = t.hashCode(); return t1; } }; }