package skiplists.lockfree; /* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.NavigableSet; import java.util.NoSuchElementException; import java.util.Random; import java.util.Set; import java.util.SortedMap; import java.util.concurrent.ConcurrentNavigableMap; import java.util.concurrent.ConcurrentSkipListSet; import java.util.concurrent.atomic.AtomicReferenceFieldUpdater; import contention.abstractions.CompositionalMap; import contention.abstractions.CompositionalMap.Vars; /** * A scalable concurrent {@link ConcurrentNavigableMap} implementation. The map * is sorted according to the {@linkplain Comparable natural ordering} of its * keys, or by a {@link Comparator} provided at map creation time, depending on * which constructor is used. * * <p> * This class implements a concurrent variant of <a * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing expected average * <i>log(n)</i> time cost for the <tt>containsKey</tt>, <tt>get</tt>, * <tt>put</tt> and <tt>remove</tt> operations and their variants. Insertion, * removal, update, and access operations safely execute concurrently by * multiple threads. Iterators are <i>weakly consistent</i>, returning elements * reflecting the state of the map at some point at or since the creation of the * iterator. They do <em>not</em> throw {@link ConcurrentModificationException}, * and may proceed concurrently with other operations. Ascending key ordered * views and their iterators are faster than descending ones. * * <p> * All <tt>Map.Entry</tt> pairs returned by methods in this class and its views * represent snapshots of mappings at the time they were produced. They do * <em>not</em> support the <tt>Entry.setValue</tt> method. (Note however that * it is possible to change mappings in the associated map using <tt>put</tt>, * <tt>putIfAbsent</tt>, or <tt>replace</tt>, depending on exactly which effect * you need.) * * <p> * Beware that, unlike in most collections, the <tt>size</tt> method is * <em>not</em> a constant-time operation. Because of the asynchronous nature of * these maps, determining the current number of elements requires a traversal * of the elements. Additionally, the bulk operations <tt>putAll</tt>, * <tt>equals</tt>, and <tt>clear</tt> are <em>not</em> guaranteed to be * performed atomically. For example, an iterator operating concurrently with a * <tt>putAll</tt> operation might view only some of the added elements. * * <p> * This class and its views and iterators implement all of the <em>optional</em> * methods of the {@link Map} and {@link Iterator} interfaces. Like most other * concurrent collections, this class does <em>not</em> permit the use of * <tt>null</tt> keys or values because some null return values cannot be * reliably distinguished from the absence of elements. * * <p> * This class is a member of the <a href="{@docRoot} * /../technotes/guides/collections/index.html"> Java Collections Framework</a>. * * @author Doug Lea * @param <K> * the type of keys maintained by this map * @param <V> * the type of mapped values * @since 1.6 */ public class NonBlockingJavaSkipListMap<K, V> extends AbstractMap<K, V> implements ConcurrentNavigableMap<K, V>, CompositionalMap<K, V>, Cloneable, java.io.Serializable { /* * This class implements a tree-like two-dimensionally linked skip list in * which the index levels are represented in separate nodes from the base * nodes holding data. There are two reasons for taking this approach * instead of the usual array-based structure: 1) Array based * implementations seem to encounter more complexity and overhead 2) We can * use cheaper algorithms for the heavily-traversed index lists than can be * used for the base lists. Here's a picture of some of the basics for a * possible list with 2 levels of index: * * Head nodes Index nodes +-+ right +-+ +-+ |2|---------------->| * |--------------------->| |->null +-+ +-+ +-+ | down | | v v v +-+ +-+ +-+ * +-+ +-+ +-+ |1|----------->| |->| |------>| |----------->| |------>| * |->null +-+ +-+ +-+ +-+ +-+ +-+ v | | | | | Nodes next v v v v v +-+ +-+ * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ | * |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null +-+ +-+ * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ * * The base lists use a variant of the HM linked ordered set algorithm. See * Tim Harris, "A pragmatic implementation of non-blocking linked lists" * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged Michael "High * Performance Dynamic Lock-Free Hash Tables and List-Based Sets" * http://www.research.ibm.com/people/m/michael/pubs.htm. The basic idea in * these lists is to mark the "next" pointers of deleted nodes when deleting * to avoid conflicts with concurrent insertions, and when traversing to * keep track of triples (predecessor, node, successor) in order to detect * when and how to unlink these deleted nodes. * * Rather than using mark-bits to mark list deletions (which can be slow and * space-intensive using AtomicMarkedReference), nodes use direct CAS'able * next pointers. On deletion, instead of marking a pointer, they splice in * another node that can be thought of as standing for a marked pointer * (indicating this by using otherwise impossible field values). Using plain * nodes acts roughly like "boxed" implementations of marked pointers, but * uses new nodes only when nodes are deleted, not for every link. This * requires less space and supports faster traversal. Even if marked * references were better supported by JVMs, traversal using this technique * might still be faster because any search need only read ahead one more * node than otherwise required (to check for trailing marker) rather than * unmasking mark bits or whatever on each read. * * This approach maintains the essential property needed in the HM algorithm * of changing the next-pointer of a deleted node so that any other CAS of * it will fail, but implements the idea by changing the pointer to point to * a different node, not by marking it. While it would be possible to * further squeeze space by defining marker nodes not to have key/value * fields, it isn't worth the extra type-testing overhead. The deletion * markers are rarely encountered during traversal and are normally quickly * garbage collected. (Note that this technique would not work well in * systems without garbage collection.) * * In addition to using deletion markers, the lists also use nullness of * value fields to indicate deletion, in a style similar to typical * lazy-deletion schemes. If a node's value is null, then it is considered * logically deleted and ignored even though it is still reachable. This * maintains proper control of concurrent replace vs delete operations -- an * attempted replace must fail if a delete beat it by nulling field, and a * delete must return the last non-null value held in the field. (Note: * Null, rather than some special marker, is used for value fields here * because it just so happens to mesh with the Map API requirement that * method get returns null if there is no mapping, which allows nodes to * remain concurrently readable even when deleted. Using any other marker * value here would be messy at best.) * * Here's the sequence of events for a deletion of node n with predecessor b * and successor f, initially: * * +------+ +------+ +------+ ... | b |------>| n |----->| f | ... +------+ * +------+ +------+ * * 1. CAS n's value field from non-null to null. From this point on, no * public operations encountering the node consider this mapping to exist. * However, other ongoing insertions and deletions might still modify n's * next pointer. * * 2. CAS n's next pointer to point to a new marker node. From this point * on, no other nodes can be appended to n. which avoids deletion errors in * CAS-based linked lists. * * +------+ +------+ +------+ +------+ ... | b |------>| n * |----->|marker|------>| f | ... +------+ +------+ +------+ +------+ * * 3. CAS b's next pointer over both n and its marker. From this point on, * no new traversals will encounter n, and it can eventually be GCed. * +------+ +------+ ... | b |----------------------------------->| f | ... * +------+ +------+ * * A failure at step 1 leads to simple retry due to a lost race with another * operation. Steps 2-3 can fail because some other thread noticed during a * traversal a node with null value and helped out by marking and/or * unlinking. This helping-out ensures that no thread can become stuck * waiting for progress of the deleting thread. The use of marker nodes * slightly complicates helping-out code because traversals must track * consistent reads of up to four nodes (b, n, marker, f), not just (b, n, * f), although the next field of a marker is immutable, and once a next * field is CAS'ed to point to a marker, it never again changes, so this * requires less care. * * Skip lists add indexing to this scheme, so that the base-level traversals * start close to the locations being found, inserted or deleted -- usually * base level traversals only traverse a few nodes. This doesn't change the * basic algorithm except for the need to make sure base traversals start at * predecessors (here, b) that are not (structurally) deleted, otherwise * retrying after processing the deletion. * * Index levels are maintained as lists with volatile next fields, using CAS * to link and unlink. Races are allowed in index-list operations that can * (rarely) fail to link in a new index node or delete one. (We can't do * this of course for data nodes.) However, even when this happens, the * index lists remain sorted, so correctly serve as indices. This can impact * performance, but since skip lists are probabilistic anyway, the net * result is that under contention, the effective "p" value may be lower * than its nominal value. And race windows are kept small enough that in * practice these failures are rare, even under a lot of contention. * * The fact that retries (for both base and index lists) are relatively * cheap due to indexing allows some minor simplifications of retry logic. * Traversal restarts are performed after most "helping-out" CASes. This * isn't always strictly necessary, but the implicit backoffs tend to help * reduce other downstream failed CAS's enough to outweigh restart cost. * This worsens the worst case, but seems to improve even highly contended * cases. * * Unlike most skip-list implementations, index insertion and deletion here * require a separate traversal pass occuring after the base-level action, * to add or remove index nodes. This adds to single-threaded overhead, but * improves contended multithreaded performance by narrowing interference * windows, and allows deletion to ensure that all index nodes will be made * unreachable upon return from a public remove operation, thus avoiding * unwanted garbage retention. This is more important here than in some * other data structures because we cannot null out node fields referencing * user keys since they might still be read by other ongoing traversals. * * Indexing uses skip list parameters that maintain good search performance * while using sparser-than-usual indices: The hardwired parameters k=1, * p=0.5 (see method randomLevel) mean that about one-quarter of the nodes * have indices. Of those that do, half have one level, a quarter have two, * and so on (see Pugh's Skip List Cookbook, sec 3.4). The expected total * space requirement for a map is slightly less than for the current * implementation of java.util.TreeMap. * * Changing the level of the index (i.e, the height of the tree-like * structure) also uses CAS. The head index has initial level/height of one. * Creation of an index with height greater than the current level adds a * level to the head index by CAS'ing on a new top-most head. To maintain * good performance after a lot of removals, deletion methods heuristically * try to reduce the height if the topmost levels appear to be empty. This * may encounter races in which it possible (but rare) to reduce and "lose" * a level just as it is about to contain an index (that will then never be * encountered). This does no structural harm, and in practice appears to be * a better option than allowing unrestrained growth of levels. * * The code for all this is more verbose than you'd like. Most operations * entail locating an element (or position to insert an element). The code * to do this can't be nicely factored out because subsequent uses require a * snapshot of predecessor and/or successor and/or value fields which can't * be returned all at once, at least not without creating yet another object * to hold them -- creating such little objects is an especially bad idea * for basic internal search operations because it adds to GC overhead. * (This is one of the few times I've wished Java had macros.) Instead, some * traversal code is interleaved within insertion and removal operations. * The control logic to handle all the retry conditions is sometimes twisty. * Most search is broken into 2 parts. findPredecessor() searches index * nodes only, returning a base-level predecessor of the key. findNode() * finishes out the base-level search. Even with this factoring, there is a * fair amount of near-duplication of code to handle variants. * * For explanation of algorithms sharing at least a couple of features with * this one, see Mikhail Fomitchev's thesis * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's thesis * (http://www.cs.chalmers.se/~phs/). * * Given the use of tree-like index nodes, you might wonder why this doesn't * use some kind of search tree instead, which would support somewhat faster * search operations. The reason is that there are no known efficient * lock-free insertion and deletion algorithms for search trees. The * immutability of the "down" links of index nodes (as opposed to mutable * "left" fields in true trees) makes this tractable using only CAS * operations. * * Notation guide for local variables Node: b, n, f for predecessor, node, * successor Index: q, r, d for index node, right, down. t for another index * node Head: h Levels: j Keys: k, key Values: v, value Comparisons: c */ private static final long serialVersionUID = -8627078645895051609L; /** * Special value used to identify base-level header */ private static final Object BASE_HEADER = new Object(); /** * The topmost head index of the skiplist. */ private transient volatile HeadIndex<K, V> head; /** * The comparator used to maintain order in this map, or null if using * natural ordering. * * @serial */ private final Comparator<? super K> comparator; /** Lazily initialized key set */ private transient KeySet keySet; /** Lazily initialized entry set */ private transient EntrySet entrySet; /** Lazily initialized values collection */ private transient Values values; /** Lazily initialized descending key set */ private transient ConcurrentNavigableMap<K, V> descendingMap; /** * Initializes or resets state. Needed by constructors, clone, clear, * readObject. and ConcurrentSkipListSet.clone. (Note that comparator must * be separately initialized.) */ final void initialize() { keySet = null; entrySet = null; values = null; descendingMap = null; head = new HeadIndex<K, V>(new Node<K, V>(null, BASE_HEADER, null), null, null, 1); } /** Updater for casHead */ private static final AtomicReferenceFieldUpdater<NonBlockingJavaSkipListMap, HeadIndex> headUpdater = AtomicReferenceFieldUpdater .newUpdater(NonBlockingJavaSkipListMap.class, HeadIndex.class, "head"); /** * compareAndSet head node */ private boolean casHead(HeadIndex<K, V> cmp, HeadIndex<K, V> val) { return headUpdater.compareAndSet(this, cmp, val); } /* ---------------- Nodes -------------- */ /** * Nodes hold keys and values, and are singly linked in sorted order, * possibly with some intervening marker nodes. The list is headed by a * dummy node accessible as head.node. The value field is declared only as * Object because it takes special non-V values for marker and header nodes. */ static final class Node<K, V> { final K key; volatile Object value; volatile Node<K, V> next; /** * Creates a new regular node. */ Node(K key, Object value, Node<K, V> next) { this.key = key; this.value = value; this.next = next; } /** * Creates a new marker node. A marker is distinguished by having its * value field point to itself. Marker nodes also have null keys, a fact * that is exploited in a few places, but this doesn't distinguish * markers from the base-level header node (head.node), which also has a * null key. */ Node(Node<K, V> next) { this.key = null; this.value = this; this.next = next; } /** Updater for casNext */ static final AtomicReferenceFieldUpdater<Node, Node> nextUpdater = AtomicReferenceFieldUpdater .newUpdater(Node.class, Node.class, "next"); /** Updater for casValue */ static final AtomicReferenceFieldUpdater<Node, Object> valueUpdater = AtomicReferenceFieldUpdater .newUpdater(Node.class, Object.class, "value"); /** * compareAndSet value field */ boolean casValue(Object cmp, Object val) { return valueUpdater.compareAndSet(this, cmp, val); } /** * compareAndSet next field */ boolean casNext(Node<K, V> cmp, Node<K, V> val) { return nextUpdater.compareAndSet(this, cmp, val); } /** * Returns true if this node is a marker. This method isn't actually * called in any current code checking for markers because callers will * have already read value field and need to use that read (not another * done here) and so directly test if value points to node. * * @param n * a possibly null reference to a node * @return true if this node is a marker node */ boolean isMarker() { return value == this; } /** * Returns true if this node is the header of base-level list. * * @return true if this node is header node */ boolean isBaseHeader() { return value == BASE_HEADER; } /** * Tries to append a deletion marker to this node. * * @param f * the assumed current successor of this node * @return true if successful */ boolean appendMarker(Node<K, V> f) { return casNext(f, new Node<K, V>(f)); } /** * Helps out a deletion by appending marker or unlinking from * predecessor. This is called during traversals when value field seen * to be null. * * @param b * predecessor * @param f * successor */ void helpDelete(Node<K, V> b, Node<K, V> f) { /* * Rechecking links and then doing only one of the help-out stages * per call tends to minimize CAS interference among helping * threads. */ if (f == next && this == b.next) { if (f == null || f.value != f) // not already marked appendMarker(f); else b.casNext(this, f.next); } } /** * Returns value if this node contains a valid key-value pair, else * null. * * @return this node's value if it isn't a marker or header or is * deleted, else null. */ V getValidValue() { Object v = value; if (v == this || v == BASE_HEADER) return null; return (V) v; } /** * Creates and returns a new SimpleImmutableEntry holding current * mapping if this node holds a valid value, else null. * * @return new entry or null */ AbstractMap.SimpleImmutableEntry<K, V> createSnapshot() { V v = getValidValue(); if (v == null) return null; return new AbstractMap.SimpleImmutableEntry<K, V>(key, v); } } /* ---------------- Indexing -------------- */ /** * Index nodes represent the levels of the skip list. Note that even though * both Nodes and Indexes have forward-pointing fields, they have different * types and are handled in different ways, that can't nicely be captured by * placing field in a shared abstract class. */ static class Index<K, V> { final Node<K, V> node; final Index<K, V> down; volatile Index<K, V> right; /** * Creates index node with given values. */ Index(Node<K, V> node, Index<K, V> down, Index<K, V> right) { this.node = node; this.down = down; this.right = right; } /** Updater for casRight */ static final AtomicReferenceFieldUpdater<Index, Index> rightUpdater = AtomicReferenceFieldUpdater .newUpdater(Index.class, Index.class, "right"); /** * compareAndSet right field */ final boolean casRight(Index<K, V> cmp, Index<K, V> val) { return rightUpdater.compareAndSet(this, cmp, val); } /** * Returns true if the node this indexes has been deleted. * * @return true if indexed node is known to be deleted */ final boolean indexesDeletedNode() { return node.value == null; } /** * Tries to CAS newSucc as successor. To minimize races with unlink that * may lose this index node, if the node being indexed is known to be * deleted, it doesn't try to link in. * * @param succ * the expected current successor * @param newSucc * the new successor * @return true if successful */ final boolean link(Index<K, V> succ, Index<K, V> newSucc) { Node<K, V> n = node; newSucc.right = succ; return n.value != null && casRight(succ, newSucc); } /** * Tries to CAS right field to skip over apparent successor succ. Fails * (forcing a retraversal by caller) if this node is known to be * deleted. * * @param succ * the expected current successor * @return true if successful */ final boolean unlink(Index<K, V> succ) { // if(STRUCT_MODS) // counts.get().structMods++; return !indexesDeletedNode() && casRight(succ, succ.right); } } /* ---------------- Head nodes -------------- */ /** * Nodes heading each level keep track of their level. */ static final class HeadIndex<K, V> extends Index<K, V> { final int level; HeadIndex(Node<K, V> node, Index<K, V> down, Index<K, V> right, int level) { super(node, down, right); this.level = level; } } /* ---------------- Comparison utilities -------------- */ /** * Represents a key with a comparator as a Comparable. * * Because most sorted collections seem to use natural ordering on * Comparables (Strings, Integers, etc), most internal methods are geared to * use them. This is generally faster than checking per-comparison whether * to use comparator or comparable because it doesn't require a (Comparable) * cast for each comparison. (Optimizers can only sometimes remove such * redundant checks themselves.) When Comparators are used, * ComparableUsingComparators are created so that they act in the same way * as natural orderings. This penalizes use of Comparators vs Comparables, * which seems like the right tradeoff. */ static final class ComparableUsingComparator<K> implements Comparable<K> { final K actualKey; final Comparator<? super K> cmp; ComparableUsingComparator(K key, Comparator<? super K> cmp) { this.actualKey = key; this.cmp = cmp; } public int compareTo(K k2) { return cmp.compare(actualKey, k2); } } /** * If using comparator, return a ComparableUsingComparator, else cast key as * Comparable, which may cause ClassCastException, which is propagated back * to caller. */ private Comparable<? super K> comparable(Object key) throws ClassCastException { if (key == null) throw new NullPointerException(); if (comparator != null) return new ComparableUsingComparator<K>((K) key, comparator); else return (Comparable<? super K>) key; } /** * Compares using comparator or natural ordering. Used when the * ComparableUsingComparator approach doesn't apply. */ int compare(K k1, K k2) throws ClassCastException { Comparator<? super K> cmp = comparator; if (cmp != null) return cmp.compare(k1, k2); else return ((Comparable<? super K>) k1).compareTo(k2); } /** * Returns true if given key greater than or equal to least and strictly * less than fence, bypassing either test if least or fence are null. Needed * mainly in submap operations. */ boolean inHalfOpenRange(K key, K least, K fence) { if (key == null) throw new NullPointerException(); return ((least == null || compare(key, least) >= 0) && (fence == null || compare( key, fence) < 0)); } /** * Returns true if given key greater than or equal to least and less or * equal to fence. Needed mainly in submap operations. */ boolean inOpenRange(K key, K least, K fence) { if (key == null) throw new NullPointerException(); return ((least == null || compare(key, least) >= 0) && (fence == null || compare( key, fence) <= 0)); } /* ---------------- Traversal -------------- */ /** * Returns a base-level node with key strictly less than given key, or the * base-level header if there is no such node. Also unlinks indexes to * deleted nodes found along the way. Callers rely on this side-effect of * clearing indices to deleted nodes. * * @param key * the key * @return a predecessor of key */ private Node<K, V> findPredecessor(Comparable<? super K> key) { if (key == null) throw new NullPointerException(); // don't postpone errors for (;;) { Index<K, V> q = head; Index<K, V> r = q.right; for (;;) { if (r != null) { Node<K, V> n = r.node; K k = n.key; if (n.value == null) { if (!q.unlink(r)) break; // restart r = q.right; // reread r continue; } if (key.compareTo(k) > 0) { q = r; r = r.right; continue; } } Index<K, V> d = q.down; if (d != null) { q = d; r = d.right; } else return q.node; } } } /** * Returns node holding key or null if no such, clearing out any deleted * nodes seen along the way. Repeatedly traverses at base-level looking for * key starting at predecessor returned from findPredecessor, processing * base-level deletions as encountered. Some callers rely on this * side-effect of clearing deleted nodes. * * Restarts occur, at traversal step centered on node n, if: * * (1) After reading n's next field, n is no longer assumed predecessor b's * current successor, which means that we don't have a consistent 3-node * snapshot and so cannot unlink any subsequent deleted nodes encountered. * * (2) n's value field is null, indicating n is deleted, in which case we * help out an ongoing structural deletion before retrying. Even though * there are cases where such unlinking doesn't require restart, they aren't * sorted out here because doing so would not usually outweigh cost of * restarting. * * (3) n is a marker or n's predecessor's value field is null, indicating * (among other possibilities) that findPredecessor returned a deleted node. * We can't unlink the node because we don't know its predecessor, so rely * on another call to findPredecessor to notice and return some earlier * predecessor, which it will do. This check is only strictly needed at * beginning of loop, (and the b.value check isn't strictly needed at all) * but is done each iteration to help avoid contention with other threads by * callers that will fail to be able to change links, and so will retry * anyway. * * The traversal loops in doPut, doRemove, and findNear all include the same * three kinds of checks. And specialized versions appear in findFirst, and * findLast and their variants. They can't easily share code because each * uses the reads of fields held in locals occurring in the orders they were * performed. * * @param key * the key * @return node holding key, or null if no such */ private Node<K, V> findNode(Comparable<? super K> key) { for (;;) { Node<K, V> b = findPredecessor(key); Node<K, V> n = b.next; for (;;) { if (n == null) return null; Node<K, V> f = n.next; if (n != b.next) // inconsistent read break; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; int c = key.compareTo(n.key); if (c == 0) return n; if (c < 0) return null; b = n; n = f; } } } void finishCount2(int nodesTraversed) { Vars vars = counts.get(); vars.nodesTraversed += nodesTraversed; } void finishCount1(int nodesTraversed) { Vars vars = counts.get(); vars.getCount++; vars.nodesTraversed += nodesTraversed; } // Extra version so we count the get traversals private Node<K, V> findGetNode(Comparable<? super K> key) { int nodesTraversed = 0; for (;;) { Node<K, V> b = findPredecessor(key); Node<K, V> n = b.next; if (TRAVERSAL_COUNT) { nodesTraversed++; } for (;;) { if (n == null) { if (TRAVERSAL_COUNT) { finishCount2(nodesTraversed); } return null; } Node<K, V> f = n.next; if (TRAVERSAL_COUNT) { nodesTraversed++; } if (n != b.next) // inconsistent read break; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; int c = key.compareTo(n.key); if (c == 0) { if (TRAVERSAL_COUNT) { finishCount2(nodesTraversed); } return n; } if (c < 0) { if (TRAVERSAL_COUNT) { finishCount2(nodesTraversed); } return null; } b = n; n = f; } } } /** * Specialized variant of findNode to perform Map.get. Does a weak * traversal, not bothering to fix any deleted index nodes, returning early * if it happens to see key in index, and passing over any deleted base * nodes, falling back to getUsingFindNode only if it would otherwise return * value from an ongoing deletion. Also uses "bound" to eliminate need for * some comparisons (see Pugh Cookbook). Also folds uses of null checks and * node-skipping because markers have null keys. * * @param okey * the key * @return the value, or null if absent */ private V doGet(Object okey) { Comparable<? super K> key = comparable(okey); Node<K, V> bound = null; Index<K, V> q = head; Index<K, V> r = q.right; Node<K, V> n; K k; int c; int nodesTraversed = 0; if (TRAVERSAL_COUNT) { nodesTraversed++; } for (;;) { Index<K, V> d; // Traverse rights if (r != null && (n = r.node) != bound && (k = n.key) != null) { if ((c = key.compareTo(k)) > 0) { q = r; r = r.right; if (TRAVERSAL_COUNT) { nodesTraversed++; } continue; } else if (c == 0) { Object v = n.value; if (TRAVERSAL_COUNT) { finishCount1(nodesTraversed); } return (v != null) ? (V) v : getUsingFindNode(key); } else bound = n; } // Traverse down if ((d = q.down) != null) { q = d; r = d.right; if (TRAVERSAL_COUNT) { nodesTraversed++; } } else break; } // Traverse nexts for (n = q.node.next; n != null; n = n.next) { if (TRAVERSAL_COUNT) { nodesTraversed++; } if ((k = n.key) != null) { if ((c = key.compareTo(k)) == 0) { Object v = n.value; if (TRAVERSAL_COUNT) { finishCount1(nodesTraversed); } return (v != null) ? (V) v : getUsingFindNode(key); } else if (c < 0) break; } } if (TRAVERSAL_COUNT) { finishCount1(nodesTraversed); } return null; } /** * Performs map.get via findNode. Used as a backup if doGet encounters an * in-progress deletion. * * @param key * the key * @return the value, or null if absent */ private V getUsingFindNode(Comparable<? super K> key) { /* * Loop needed here and elsewhere in case value field goes null just as * it is about to be returned, in which case we lost a race with a * deletion, so must retry. */ for (;;) { Node<K, V> n = findGetNode(key); if (n == null) return null; Object v = n.value; if (v != null) return (V) v; } } /* ---------------- Insertion -------------- */ /** * Main insertion method. Adds element if not present, or replaces value if * present and onlyIfAbsent is false. * * @param kkey * the key * @param value * the value that must be associated with key * @param onlyIfAbsent * if should not insert if already present * @return the old value, or null if newly inserted */ private V doPut(K kkey, V value, boolean onlyIfAbsent) { Comparable<? super K> key = comparable(kkey); for (;;) { Node<K, V> b = findPredecessor(key); Node<K, V> n = b.next; for (;;) { if (n != null) { Node<K, V> f = n.next; if (n != b.next) // inconsistent read break; ; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; int c = key.compareTo(n.key); if (c > 0) { b = n; n = f; continue; } if (c == 0) { if (onlyIfAbsent || n.casValue(v, value)) return (V) v; else break; // restart if lost race to replace value } // else c < 0; fall through } Node<K, V> z = new Node<K, V>(kkey, value, n); if (!b.casNext(n, z)) break; // restart if lost race to append to b int level = randomLevel(); if (level > 0) { // if(STRUCT_MODS) // counts.get().structMods += level - 1; insertIndex(z, level); } return null; } } } /** * Returns a random level for inserting a new node. Hardwired to k=1, p=0.5, * max 31 (see above and Pugh's "Skip List Cookbook", sec 3.4). * * This uses the simplest of the generators described in George Marsaglia's * "Xorshift RNGs" paper. This is not a high-quality generator but is * acceptable here. */ private int randomLevel() { return skiplists.RandomLevelGenerator.randomLevel(); } /** * Creates and adds index nodes for the given node. * * @param z * the node * @param level * the level of the index */ private void insertIndex(Node<K, V> z, int level) { HeadIndex<K, V> h = head; int max = h.level; if (level <= max) { Index<K, V> idx = null; for (int i = 1; i <= level; ++i) idx = new Index<K, V>(z, idx, null); addIndex(idx, h, level); } else { // Add a new level /* * To reduce interference by other threads checking for empty levels * in tryReduceLevel, new levels are added with initialized right * pointers. Which in turn requires keeping levels in an array to * access them while creating new head index nodes from the opposite * direction. */ level = max + 1; Index<K, V>[] idxs = (Index<K, V>[]) new Index[level + 1]; Index<K, V> idx = null; for (int i = 1; i <= level; ++i) idxs[i] = idx = new Index<K, V>(z, idx, null); HeadIndex<K, V> oldh; int k; for (;;) { oldh = head; int oldLevel = oldh.level; if (level <= oldLevel) { // lost race to add level k = level; break; } HeadIndex<K, V> newh = oldh; Node<K, V> oldbase = oldh.node; for (int j = oldLevel + 1; j <= level; ++j) newh = new HeadIndex<K, V>(oldbase, newh, idxs[j], j); if (casHead(oldh, newh)) { k = oldLevel; break; } } addIndex(idxs[k], oldh, k); } } /** * Adds given index nodes from given level down to 1. * * @param idx * the topmost index node being inserted * @param h * the value of head to use to insert. This must be snapshotted * by callers to provide correct insertion level * @param indexLevel * the level of the index */ private void addIndex(Index<K, V> idx, HeadIndex<K, V> h, int indexLevel) { // Track next level to insert in case of retries int insertionLevel = indexLevel; Comparable<? super K> key = comparable(idx.node.key); if (key == null) throw new NullPointerException(); // Similar to findPredecessor, but adding index nodes along // path to key. for (;;) { int j = h.level; Index<K, V> q = h; Index<K, V> r = q.right; Index<K, V> t = idx; for (;;) { if (r != null) { Node<K, V> n = r.node; // compare before deletion check avoids needing recheck int c = key.compareTo(n.key); if (n.value == null) { if (!q.unlink(r)) break; r = q.right; continue; } if (c > 0) { q = r; r = r.right; continue; } } if (j == insertionLevel) { // Don't insert index if node already deleted if (t.indexesDeletedNode()) { findNode(key); // cleans up return; } if (!q.link(r, t)) break; // restart if (--insertionLevel == 0) { // need final deletion check before return if (t.indexesDeletedNode()) findNode(key); return; } } if (--j >= insertionLevel && j < indexLevel) t = t.down; q = q.down; r = q.right; } } } /* ---------------- Deletion -------------- */ /** * Main deletion method. Locates node, nulls value, appends a deletion * marker, unlinks predecessor, removes associated index nodes, and possibly * reduces head index level. * * Index nodes are cleared out simply by calling findPredecessor. which * unlinks indexes to deleted nodes found along path to key, which will * include the indexes to this node. This is done unconditionally. We can't * check beforehand whether there are index nodes because it might be the * case that some or all indexes hadn't been inserted yet for this node * during initial search for it, and we'd like to ensure lack of garbage * retention, so must call to be sure. * * @param okey * the key * @param value * if non-null, the value that must be associated with key * @return the node, or null if not found */ final V doRemove(Object okey, Object value) { Comparable<? super K> key = comparable(okey); for (;;) { Node<K, V> b = findPredecessor(key); Node<K, V> n = b.next; for (;;) { if (n == null) return null; Node<K, V> f = n.next; if (n != b.next) // inconsistent read break; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; int c = key.compareTo(n.key); if (c < 0) return null; if (c > 0) { b = n; n = f; continue; } if (value != null && !value.equals(v)) return null; if (!n.casValue(v, null)) break; if (STRUCT_MODS) { Vars vars = counts.get(); vars.structMods++; } if (!n.appendMarker(f) || !b.casNext(n, f)) findNode(key); // Retry via findNode else { findPredecessor(key); // Clean index if (head.right == null) tryReduceLevel(); } return (V) v; } } } /** * Possibly reduce head level if it has no nodes. This method can (rarely) * make mistakes, in which case levels can disappear even though they are * about to contain index nodes. This impacts performance, not correctness. * To minimize mistakes as well as to reduce hysteresis, the level is * reduced by one only if the topmost three levels look empty. Also, if the * removed level looks non-empty after CAS, we try to change it back quick * before anyone notices our mistake! (This trick works pretty well because * this method will practically never make mistakes unless current thread * stalls immediately before first CAS, in which case it is very unlikely to * stall again immediately afterwards, so will recover.) * * We put up with all this rather than just let levels grow because * otherwise, even a small map that has undergone a large number of * insertions and removals will have a lot of levels, slowing down access * more than would an occasional unwanted reduction. */ private void tryReduceLevel() { HeadIndex<K, V> h = head; HeadIndex<K, V> d; HeadIndex<K, V> e; if (h.level > 3 && (d = (HeadIndex<K, V>) h.down) != null && (e = (HeadIndex<K, V>) d.down) != null && e.right == null && d.right == null && h.right == null && casHead(h, d) && // try // to // set h.right != null) // recheck casHead(d, h); // try to backout } /* ---------------- Finding and removing first element -------------- */ /** * Specialized variant of findNode to get first valid node. * * @return first node or null if empty */ Node<K, V> findFirst() { for (;;) { Node<K, V> b = head.node; Node<K, V> n = b.next; if (n == null) return null; if (n.value != null) return n; n.helpDelete(b, n.next); } } /** * Removes first entry; returns its snapshot. * * @return null if empty, else snapshot of first entry */ Map.Entry<K, V> doRemoveFirstEntry() { for (;;) { Node<K, V> b = head.node; Node<K, V> n = b.next; if (n == null) return null; Node<K, V> f = n.next; if (n != b.next) continue; Object v = n.value; if (v == null) { n.helpDelete(b, f); continue; } if (!n.casValue(v, null)) continue; if (!n.appendMarker(f) || !b.casNext(n, f)) findFirst(); // retry clearIndexToFirst(); return new AbstractMap.SimpleImmutableEntry<K, V>(n.key, (V) v); } } /** * Clears out index nodes associated with deleted first entry. */ private void clearIndexToFirst() { for (;;) { Index<K, V> q = head; for (;;) { Index<K, V> r = q.right; if (r != null && r.indexesDeletedNode() && !q.unlink(r)) break; if ((q = q.down) == null) { if (head.right == null) tryReduceLevel(); return; } } } } /* ---------------- Finding and removing last element -------------- */ /** * Specialized version of find to get last valid node. * * @return last node or null if empty */ Node<K, V> findLast() { /* * findPredecessor can't be used to traverse index level because this * doesn't use comparisons. So traversals of both levels are folded * together. */ Index<K, V> q = head; for (;;) { Index<K, V> d, r; if ((r = q.right) != null) { if (r.indexesDeletedNode()) { q.unlink(r); q = head; // restart } else q = r; } else if ((d = q.down) != null) { q = d; } else { Node<K, V> b = q.node; Node<K, V> n = b.next; for (;;) { if (n == null) return (b.isBaseHeader()) ? null : b; Node<K, V> f = n.next; // inconsistent read if (n != b.next) break; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; b = n; n = f; } q = head; // restart } } } /** * Specialized variant of findPredecessor to get predecessor of last valid * node. Needed when removing the last entry. It is possible that all * successors of returned node will have been deleted upon return, in which * case this method can be retried. * * @return likely predecessor of last node */ private Node<K, V> findPredecessorOfLast() { for (;;) { Index<K, V> q = head; for (;;) { Index<K, V> d, r; if ((r = q.right) != null) { if (r.indexesDeletedNode()) { q.unlink(r); break; // must restart } // proceed as far across as possible without overshooting if (r.node.next != null) { q = r; continue; } } if ((d = q.down) != null) q = d; else return q.node; } } } /** * Removes last entry; returns its snapshot. Specialized variant of * doRemove. * * @return null if empty, else snapshot of last entry */ Map.Entry<K, V> doRemoveLastEntry() { for (;;) { Node<K, V> b = findPredecessorOfLast(); Node<K, V> n = b.next; if (n == null) { if (b.isBaseHeader()) // empty return null; else continue; // all b's successors are deleted; retry } for (;;) { Node<K, V> f = n.next; if (n != b.next) // inconsistent read break; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; if (f != null) { b = n; n = f; continue; } if (!n.casValue(v, null)) break; K key = n.key; Comparable<? super K> ck = comparable(key); if (!n.appendMarker(f) || !b.casNext(n, f)) findNode(ck); // Retry via findNode else { findPredecessor(ck); // Clean index if (head.right == null) tryReduceLevel(); } return new AbstractMap.SimpleImmutableEntry<K, V>(key, (V) v); } } } /* ---------------- Relational operations -------------- */ // Control values OR'ed as arguments to findNear private static final int EQ = 1; private static final int LT = 2; private static final int GT = 0; // Actually checked as !LT /** * Utility for ceiling, floor, lower, higher methods. * * @param kkey * the key * @param rel * the relation -- OR'ed combination of EQ, LT, GT * @return nearest node fitting relation, or null if no such */ Node<K, V> findNear(K kkey, int rel) { Comparable<? super K> key = comparable(kkey); for (;;) { Node<K, V> b = findPredecessor(key); Node<K, V> n = b.next; for (;;) { if (n == null) return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b; Node<K, V> f = n.next; if (n != b.next) // inconsistent read break; Object v = n.value; if (v == null) { // n is deleted n.helpDelete(b, f); break; } if (v == n || b.value == null) // b is deleted break; int c = key.compareTo(n.key); if ((c == 0 && (rel & EQ) != 0) || (c < 0 && (rel & LT) == 0)) return n; if (c <= 0 && (rel & LT) != 0) return (b.isBaseHeader()) ? null : b; b = n; n = f; } } } /** * Returns SimpleImmutableEntry for results of findNear. * * @param key * the key * @param rel * the relation -- OR'ed combination of EQ, LT, GT * @return Entry fitting relation, or null if no such */ AbstractMap.SimpleImmutableEntry<K, V> getNear(K key, int rel) { for (;;) { Node<K, V> n = findNear(key, rel); if (n == null) return null; AbstractMap.SimpleImmutableEntry<K, V> e = n.createSnapshot(); if (e != null) return e; } } /* ---------------- Constructors -------------- */ /** * Constructs a new, empty map, sorted according to the * {@linkplain Comparable natural ordering} of the keys. */ public NonBlockingJavaSkipListMap() { this.comparator = null; initialize(); } /** * Constructs a new, empty map, sorted according to the specified * comparator. * * @param comparator * the comparator that will be used to order this map. If * <tt>null</tt>, the {@linkplain Comparable natural ordering} of * the keys will be used. */ public NonBlockingJavaSkipListMap(Comparator<? super K> comparator) { this.comparator = comparator; initialize(); } /** * Constructs a new map containing the same mappings as the given map, * sorted according to the {@linkplain Comparable natural ordering} of the * keys. * * @param m * the map whose mappings are to be placed in this map * @throws ClassCastException * if the keys in <tt>m</tt> are not {@link Comparable}, or are * not mutually comparable * @throws NullPointerException * if the specified map or any of its keys or values are null */ public NonBlockingJavaSkipListMap(Map<? extends K, ? extends V> m) { this.comparator = null; initialize(); putAll(m); } /** * Constructs a new map containing the same mappings and using the same * ordering as the specified sorted map. * * @param m * the sorted map whose mappings are to be placed in this map, * and whose comparator is to be used to sort this map * @throws NullPointerException * if the specified sorted map or any of its keys or values are * null */ public NonBlockingJavaSkipListMap(SortedMap<K, ? extends V> m) { this.comparator = m.comparator(); initialize(); buildFromSorted(m); } /** * Returns a shallow copy of this <tt>ConcurrentSkipListMap</tt> instance. * (The keys and values themselves are not cloned.) * * @return a shallow copy of this map */ public NonBlockingJavaSkipListMap<K, V> clone() { NonBlockingJavaSkipListMap<K, V> clone = null; try { clone = (NonBlockingJavaSkipListMap<K, V>) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(); } clone.initialize(); clone.buildFromSorted(this); return clone; } /** * Streamlined bulk insertion to initialize from elements of given sorted * map. Call only from constructor or clone method. */ private void buildFromSorted(SortedMap<K, ? extends V> map) { if (map == null) throw new NullPointerException(); HeadIndex<K, V> h = head; Node<K, V> basepred = h.node; // Track the current rightmost node at each level. Uses an // ArrayList to avoid committing to initial or maximum level. ArrayList<Index<K, V>> preds = new ArrayList<Index<K, V>>(); // initialize for (int i = 0; i <= h.level; ++i) preds.add(null); Index<K, V> q = h; for (int i = h.level; i > 0; --i) { preds.set(i, q); q = q.down; } Iterator<? extends Map.Entry<? extends K, ? extends V>> it = map .entrySet().iterator(); while (it.hasNext()) { Map.Entry<? extends K, ? extends V> e = it.next(); int j = randomLevel(); if (j > h.level) j = h.level + 1; K k = e.getKey(); V v = e.getValue(); if (k == null || v == null) throw new NullPointerException(); Node<K, V> z = new Node<K, V>(k, v, null); basepred.next = z; basepred = z; if (j > 0) { Index<K, V> idx = null; for (int i = 1; i <= j; ++i) { idx = new Index<K, V>(z, idx, null); if (i > h.level) h = new HeadIndex<K, V>(h.node, h, idx, i); if (i < preds.size()) { preds.get(i).right = idx; preds.set(i, idx); } else preds.add(idx); } } } head = h; } /* ---------------- Serialization -------------- */ /** * Save the state of this map to a stream. * * @serialData The key (Object) and value (Object) for each key-value * mapping represented by the map, followed by <tt>null</tt>. * The key-value mappings are emitted in key-order (as * determined by the Comparator, or by the keys' natural * ordering if no Comparator). */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out the Comparator and any hidden stuff s.defaultWriteObject(); // Write out keys and values (alternating) for (Node<K, V> n = findFirst(); n != null; n = n.next) { V v = n.getValidValue(); if (v != null) { s.writeObject(n.key); s.writeObject(v); } } s.writeObject(null); } /** * Reconstitute the map from a stream. */ private void readObject(final java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in the Comparator and any hidden stuff s.defaultReadObject(); // Reset transients initialize(); /* * This is nearly identical to buildFromSorted, but is distinct because * readObject calls can't be nicely adapted as the kind of iterator * needed by buildFromSorted. (They can be, but doing so requires type * cheats and/or creation of adaptor classes.) It is simpler to just * adapt the code. */ HeadIndex<K, V> h = head; Node<K, V> basepred = h.node; ArrayList<Index<K, V>> preds = new ArrayList<Index<K, V>>(); for (int i = 0; i <= h.level; ++i) preds.add(null); Index<K, V> q = h; for (int i = h.level; i > 0; --i) { preds.set(i, q); q = q.down; } for (;;) { Object k = s.readObject(); if (k == null) break; Object v = s.readObject(); if (v == null) throw new NullPointerException(); K key = (K) k; V val = (V) v; int j = randomLevel(); if (j > h.level) j = h.level + 1; Node<K, V> z = new Node<K, V>(key, val, null); basepred.next = z; basepred = z; if (j > 0) { Index<K, V> idx = null; for (int i = 1; i <= j; ++i) { idx = new Index<K, V>(z, idx, null); if (i > h.level) h = new HeadIndex<K, V>(h.node, h, idx, i); if (i < preds.size()) { preds.get(i).right = idx; preds.set(i, idx); } else preds.add(idx); } } } head = h; } /* ------ Map API methods ------ */ /** * Returns <tt>true</tt> if this map contains a mapping for the specified * key. * * @param key * key whose presence in this map is to be tested * @return <tt>true</tt> if this map contains a mapping for the specified * key * @throws ClassCastException * if the specified key cannot be compared with the keys * currently in the map * @throws NullPointerException * if the specified key is null */ public boolean containsKey(Object key) { return doGet(key) != null; } /** * Returns the value to which the specified key is mapped, or {@code null} * if this map contains no mapping for the key. * * <p> * More formally, if this map contains a mapping from a key {@code k} to a * value {@code v} such that {@code key} compares equal to {@code k} * according to the map's ordering, then this method returns {@code v}; * otherwise it returns {@code null}. (There can be at most one such * mapping.) * * @throws ClassCastException * if the specified key cannot be compared with the keys * currently in the map * @throws NullPointerException * if the specified key is null */ public V get(Object key) { return doGet(key); } /** * Associates the specified value with the specified key in this map. If the * map previously contained a mapping for the key, the old value is * replaced. * * @param key * key with which the specified value is to be associated * @param value * value to be associated with the specified key * @return the previous value associated with the specified key, or * <tt>null</tt> if there was no mapping for the key * @throws ClassCastException * if the specified key cannot be compared with the keys * currently in the map * @throws NullPointerException * if the specified key or value is null */ public V put(K key, V value) { if (value == null) throw new NullPointerException(); return doPut(key, value, false); } /** * Removes the mapping for the specified key from this map if present. * * @param key * key for which mapping should be removed * @return the previous value associated with the specified key, or * <tt>null</tt> if there was no mapping for the key * @throws ClassCastException * if the specified key cannot be compared with the keys * currently in the map * @throws NullPointerException * if the specified key is null */ public V remove(Object key) { return doRemove(key, null); } /** * Returns <tt>true</tt> if this map maps one or more keys to the specified * value. This operation requires time linear in the map size. * * @param value * value whose presence in this map is to be tested * @return <tt>true</tt> if a mapping to <tt>value</tt> exists; * <tt>false</tt> otherwise * @throws NullPointerException * if the specified value is null */ public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); for (Node<K, V> n = findFirst(); n != null; n = n.next) { V v = n.getValidValue(); if (v != null && value.equals(v)) return true; } return false; } /** * Returns the number of key-value mappings in this map. If this map * contains more than <tt>Integer.MAX_VALUE</tt> elements, it returns * <tt>Integer.MAX_VALUE</tt>. * * <p> * Beware that, unlike in most collections, this method is <em>NOT</em> a * constant-time operation. Because of the asynchronous nature of these * maps, determining the current number of elements requires traversing them * all to count them. Additionally, it is possible for the size to change * during execution of this method, in which case the returned result will * be inaccurate. Thus, this method is typically not very useful in * concurrent applications. * * @return the number of elements in this map */ public int size() { long count = 0; for (Node<K, V> n = findFirst(); n != null; n = n.next) { if (n.getValidValue() != null) ++count; } return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count; } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings */ public boolean isEmpty() { return findFirst() == null; } /** * Removes all of the mappings from this map. */ public void clear() { initialize(); } /* ---------------- View methods -------------- */ /* * Note: Lazy initialization works for views because view classes are * stateless/immutable so it doesn't matter wrt correctness if more than one * is created (which will only rarely happen). Even so, the following idiom * conservatively ensures that the method returns the one it created if it * does so, not one created by another racing thread. */ /** * Returns a {@link NavigableSet} view of the keys contained in this map. * The set's iterator returns the keys in ascending order. The set is backed * by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from the map, via the {@code Iterator.remove}, * {@code Set.remove}, {@code removeAll}, {@code retainAll}, and * {@code clear} operations. It does not support the {@code add} or * {@code addAll} operations. * * <p> * The view's {@code iterator} is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. * * <p> * This method is equivalent to method {@code navigableKeySet}. * * @return a navigable set view of the keys in this map */ public NavigableSet<K> keySet() { KeySet ks = keySet; return (ks != null) ? ks : (keySet = new KeySet(this)); } public NavigableSet<K> navigableKeySet() { KeySet ks = keySet; return (ks != null) ? ks : (keySet = new KeySet(this)); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection's iterator returns the values in ascending order of the * corresponding keys. The collection is backed by the map, so changes to * the map are reflected in the collection, and vice-versa. The collection * supports element removal, which removes the corresponding mapping from * the map, via the <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt> operations. It * does not support the <tt>add</tt> or <tt>addAll</tt> operations. * * <p> * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. */ public Collection<V> values() { Values vs = values; return (vs != null) ? vs : (values = new Values(this)); } /** * Returns a {@link Set} view of the mappings contained in this map. The * set's iterator returns the entries in ascending key order. The set is * backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from the map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and * <tt>clear</tt> operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * <p> * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. * * <p> * The <tt>Map.Entry</tt> elements returned by <tt>iterator.next()</tt> do * <em>not</em> support the <tt>setValue</tt> operation. * * @return a set view of the mappings contained in this map, sorted in * ascending key order */ public Set<Map.Entry<K, V>> entrySet() { EntrySet es = entrySet; return (es != null) ? es : (entrySet = new EntrySet(this)); } public ConcurrentNavigableMap<K, V> descendingMap() { ConcurrentNavigableMap<K, V> dm = descendingMap; return (dm != null) ? dm : (descendingMap = new SubMap<K, V>(this, null, false, null, false, true)); } public NavigableSet<K> descendingKeySet() { return descendingMap().navigableKeySet(); } /* ---------------- AbstractMap Overrides -------------- */ /** * Compares the specified object with this map for equality. Returns * <tt>true</tt> if the given object is also a map and the two maps * represent the same mappings. More formally, two maps <tt>m1</tt> and * <tt>m2</tt> represent the same mappings if * <tt>m1.entrySet().equals(m2.entrySet())</tt>. This operation may return * misleading results if either map is concurrently modified during * execution of this method. * * @param o * object to be compared for equality with this map * @return <tt>true</tt> if the specified object is equal to this map */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Map)) return false; Map<?, ?> m = (Map<?, ?>) o; try { for (Map.Entry<K, V> e : this.entrySet()) if (!e.getValue().equals(m.get(e.getKey()))) return false; for (Map.Entry<?, ?> e : m.entrySet()) { Object k = e.getKey(); Object v = e.getValue(); if (k == null || v == null || !v.equals(get(k))) return false; } return true; } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } } /* ------ ConcurrentMap API methods ------ */ /** * {@inheritDoc} * * @return the previous value associated with the specified key, or * <tt>null</tt> if there was no mapping for the key * @throws ClassCastException * if the specified key cannot be compared with the keys * currently in the map * @throws NullPointerException * if the specified key or value is null */ public V putIfAbsent(K key, V value) { if (value == null) throw new NullPointerException(); return doPut(key, value, true); } /** * {@inheritDoc} * * @throws ClassCastException * if the specified key cannot be compared with the keys * currently in the map * @throws NullPointerException * if the specified key is null */ public boolean remove(Object key, Object value) { if (key == null) throw new NullPointerException(); if (value == null) return false; return doRemove(key, value) != null; } /** * {@inheritDoc} * * @throws ClassCastException * if the specified key cannot be compared with the keys * currently in the map * @throws NullPointerException * if any of the arguments are null */ public boolean replace(K key, V oldValue, V newValue) { if (oldValue == null || newValue == null) throw new NullPointerException(); Comparable<? super K> k = comparable(key); for (;;) { Node<K, V> n = findNode(k); if (n == null) return false; Object v = n.value; if (v != null) { if (!oldValue.equals(v)) return false; if (n.casValue(v, newValue)) return true; } } } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or * <tt>null</tt> if there was no mapping for the key * @throws ClassCastException * if the specified key cannot be compared with the keys * currently in the map * @throws NullPointerException * if the specified key or value is null */ public V replace(K key, V value) { if (value == null) throw new NullPointerException(); Comparable<? super K> k = comparable(key); for (;;) { Node<K, V> n = findNode(k); if (n == null) return null; Object v = n.value; if (v != null && n.casValue(v, value)) return (V) v; } } /* ------ SortedMap API methods ------ */ public Comparator<? super K> comparator() { return comparator; } /** * @throws NoSuchElementException * {@inheritDoc} */ public K firstKey() { Node<K, V> n = findFirst(); if (n == null) throw new NoSuchElementException(); return n.key; } /** * @throws NoSuchElementException * {@inheritDoc} */ public K lastKey() { Node<K, V> n = findLast(); if (n == null) throw new NoSuchElementException(); return n.key; } /** * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if {@code fromKey} or {@code toKey} is null * @throws IllegalArgumentException * {@inheritDoc} */ public ConcurrentNavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (fromKey == null || toKey == null) throw new NullPointerException(); return new SubMap<K, V>(this, fromKey, fromInclusive, toKey, toInclusive, false); } /** * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if {@code toKey} is null * @throws IllegalArgumentException * {@inheritDoc} */ public ConcurrentNavigableMap<K, V> headMap(K toKey, boolean inclusive) { if (toKey == null) throw new NullPointerException(); return new SubMap<K, V>(this, null, false, toKey, inclusive, false); } /** * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if {@code fromKey} is null * @throws IllegalArgumentException * {@inheritDoc} */ public ConcurrentNavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { if (fromKey == null) throw new NullPointerException(); return new SubMap<K, V>(this, fromKey, inclusive, null, false, false); } /** * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if {@code fromKey} or {@code toKey} is null * @throws IllegalArgumentException * {@inheritDoc} */ public ConcurrentNavigableMap<K, V> subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } /** * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if {@code toKey} is null * @throws IllegalArgumentException * {@inheritDoc} */ public ConcurrentNavigableMap<K, V> headMap(K toKey) { return headMap(toKey, false); } /** * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if {@code fromKey} is null * @throws IllegalArgumentException * {@inheritDoc} */ public ConcurrentNavigableMap<K, V> tailMap(K fromKey) { return tailMap(fromKey, true); } /* ---------------- Relational operations -------------- */ /** * Returns a key-value mapping associated with the greatest key strictly * less than the given key, or <tt>null</tt> if there is no such key. The * returned entry does <em>not</em> support the <tt>Entry.setValue</tt> * method. * * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if the specified key is null */ public Map.Entry<K, V> lowerEntry(K key) { return getNear(key, LT); } /** * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if the specified key is null */ public K lowerKey(K key) { Node<K, V> n = findNear(key, LT); return (n == null) ? null : n.key; } /** * Returns a key-value mapping associated with the greatest key less than or * equal to the given key, or <tt>null</tt> if there is no such key. The * returned entry does <em>not</em> support the <tt>Entry.setValue</tt> * method. * * @param key * the key * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if the specified key is null */ public Map.Entry<K, V> floorEntry(K key) { return getNear(key, LT | EQ); } /** * @param key * the key * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if the specified key is null */ public K floorKey(K key) { Node<K, V> n = findNear(key, LT | EQ); return (n == null) ? null : n.key; } /** * Returns a key-value mapping associated with the least key greater than or * equal to the given key, or <tt>null</tt> if there is no such entry. The * returned entry does <em>not</em> support the <tt>Entry.setValue</tt> * method. * * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if the specified key is null */ public Map.Entry<K, V> ceilingEntry(K key) { return getNear(key, GT | EQ); } /** * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if the specified key is null */ public K ceilingKey(K key) { Node<K, V> n = findNear(key, GT | EQ); return (n == null) ? null : n.key; } /** * Returns a key-value mapping associated with the least key strictly * greater than the given key, or <tt>null</tt> if there is no such key. The * returned entry does <em>not</em> support the <tt>Entry.setValue</tt> * method. * * @param key * the key * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if the specified key is null */ public Map.Entry<K, V> higherEntry(K key) { return getNear(key, GT); } /** * @param key * the key * @throws ClassCastException * {@inheritDoc} * @throws NullPointerException * if the specified key is null */ public K higherKey(K key) { Node<K, V> n = findNear(key, GT); return (n == null) ? null : n.key; } /** * Returns a key-value mapping associated with the least key in this map, or * <tt>null</tt> if the map is empty. The returned entry does <em>not</em> * support the <tt>Entry.setValue</tt> method. */ public Map.Entry<K, V> firstEntry() { for (;;) { Node<K, V> n = findFirst(); if (n == null) return null; AbstractMap.SimpleImmutableEntry<K, V> e = n.createSnapshot(); if (e != null) return e; } } /** * Returns a key-value mapping associated with the greatest key in this map, * or <tt>null</tt> if the map is empty. The returned entry does * <em>not</em> support the <tt>Entry.setValue</tt> method. */ public Map.Entry<K, V> lastEntry() { for (;;) { Node<K, V> n = findLast(); if (n == null) return null; AbstractMap.SimpleImmutableEntry<K, V> e = n.createSnapshot(); if (e != null) return e; } } /** * Removes and returns a key-value mapping associated with the least key in * this map, or <tt>null</tt> if the map is empty. The returned entry does * <em>not</em> support the <tt>Entry.setValue</tt> method. */ public Map.Entry<K, V> pollFirstEntry() { return doRemoveFirstEntry(); } /** * Removes and returns a key-value mapping associated with the greatest key * in this map, or <tt>null</tt> if the map is empty. The returned entry * does <em>not</em> support the <tt>Entry.setValue</tt> method. */ public Map.Entry<K, V> pollLastEntry() { return doRemoveLastEntry(); } /* ---------------- Iterators -------------- */ /** * Base of iterator classes: */ abstract class Iter<T> implements Iterator<T> { /** the last node returned by next() */ Node<K, V> lastReturned; /** the next node to return from next(); */ Node<K, V> next; /** Cache of next value field to maintain weak consistency */ V nextValue; /** Initializes ascending iterator for entire range. */ Iter() { for (;;) { next = findFirst(); if (next == null) break; Object x = next.value; if (x != null && x != next) { nextValue = (V) x; break; } } } public final boolean hasNext() { return next != null; } /** Advances next to higher entry. */ final void advance() { if (next == null) throw new NoSuchElementException(); lastReturned = next; for (;;) { next = next.next; if (next == null) break; Object x = next.value; if (x != null && x != next) { nextValue = (V) x; break; } } } public void remove() { Node<K, V> l = lastReturned; if (l == null) throw new IllegalStateException(); // It would not be worth all of the overhead to directly // unlink from here. Using remove is fast enough. NonBlockingJavaSkipListMap.this.remove(l.key); lastReturned = null; } } final class ValueIterator extends Iter<V> { public V next() { V v = nextValue; advance(); return v; } } final class KeyIterator extends Iter<K> { public K next() { Node<K, V> n = next; advance(); return n.key; } } final class EntryIterator extends Iter<Map.Entry<K, V>> { public Map.Entry<K, V> next() { Node<K, V> n = next; V v = nextValue; advance(); return new AbstractMap.SimpleImmutableEntry<K, V>(n.key, v); } } // Factory methods for iterators needed by ConcurrentSkipListSet etc Iterator<K> keyIterator() { return new KeyIterator(); } Iterator<V> valueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K, V>> entryIterator() { return new EntryIterator(); } /* ---------------- View Classes -------------- */ /* * View classes are static, delegating to a ConcurrentNavigableMap to allow * use by SubMaps, which outweighs the ugliness of needing type-tests for * Iterator methods. */ static final <E> List<E> toList(Collection<E> c) { // Using size() here would be a pessimization. List<E> list = new ArrayList<E>(); for (E e : c) list.add(e); return list; } static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> { private final ConcurrentNavigableMap<E, Object> m; KeySet(ConcurrentNavigableMap<E, Object> map) { m = map; } public int size() { return m.size(); } public boolean isEmpty() { return m.isEmpty(); } public boolean contains(Object o) { return m.containsKey(o); } public boolean remove(Object o) { return m.remove(o) != null; } public void clear() { m.clear(); } public E lower(E e) { return m.lowerKey(e); } public E floor(E e) { return m.floorKey(e); } public E ceiling(E e) { return m.ceilingKey(e); } public E higher(E e) { return m.higherKey(e); } public Comparator<? super E> comparator() { return m.comparator(); } public E first() { return m.firstKey(); } public E last() { return m.lastKey(); } public E pollFirst() { Map.Entry<E, Object> e = m.pollFirstEntry(); return e == null ? null : e.getKey(); } public E pollLast() { Map.Entry<E, Object> e = m.pollLastEntry(); return e == null ? null : e.getKey(); } public Iterator<E> iterator() { if (m instanceof NonBlockingJavaSkipListMap) return ((NonBlockingJavaSkipListMap<E, Object>) m) .keyIterator(); else return ((NonBlockingJavaSkipListMap.SubMap<E, Object>) m) .keyIterator(); } public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Set)) return false; Collection<?> c = (Collection<?>) o; try { return containsAll(c) && c.containsAll(this); } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } } public Object[] toArray() { return toList(this).toArray(); } public <T> T[] toArray(T[] a) { return toList(this).toArray(a); } public Iterator<E> descendingIterator() { return descendingSet().iterator(); } public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { //TODO this is not implemented return null; // return new ConcurrentSkipListSet<E>(m.subMap(fromElement, // fromInclusive, toElement, toInclusive)); } public NavigableSet<E> headSet(E toElement, boolean inclusive) { //TODO this is not implemented return null; // return new ConcurrentSkipListSet<E>(m.headMap(toElement, inclusive)); } public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { //TODO this is not implemented return null; // return new ConcurrentSkipListSet<E>(m.tailMap(fromElement, // inclusive)); } public NavigableSet<E> subSet(E fromElement, E toElement) { return subSet(fromElement, true, toElement, false); } public NavigableSet<E> headSet(E toElement) { return headSet(toElement, false); } public NavigableSet<E> tailSet(E fromElement) { return tailSet(fromElement, true); } public NavigableSet<E> descendingSet() { //TODO this is not implemented return null; // return new ConcurrentSkipListSet(m.descendingMap()); } } static final class Values<E> extends AbstractCollection<E> { private final ConcurrentNavigableMap<Object, E> m; Values(ConcurrentNavigableMap<Object, E> map) { m = map; } public Iterator<E> iterator() { if (m instanceof NonBlockingJavaSkipListMap) return ((NonBlockingJavaSkipListMap<Object, E>) m) .valueIterator(); else return ((SubMap<Object, E>) m).valueIterator(); } public boolean isEmpty() { return m.isEmpty(); } public int size() { return m.size(); } public boolean contains(Object o) { return m.containsValue(o); } public void clear() { m.clear(); } public Object[] toArray() { return toList(this).toArray(); } public <T> T[] toArray(T[] a) { return toList(this).toArray(a); } } static final class EntrySet<K1, V1> extends AbstractSet<Map.Entry<K1, V1>> { private final ConcurrentNavigableMap<K1, V1> m; EntrySet(ConcurrentNavigableMap<K1, V1> map) { m = map; } public Iterator<Map.Entry<K1, V1>> iterator() { if (m instanceof NonBlockingJavaSkipListMap) return ((NonBlockingJavaSkipListMap<K1, V1>) m).entryIterator(); else return ((SubMap<K1, V1>) m).entryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K1, V1> e = (Map.Entry<K1, V1>) o; V1 v = m.get(e.getKey()); return v != null && v.equals(e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K1, V1> e = (Map.Entry<K1, V1>) o; return m.remove(e.getKey(), e.getValue()); } public boolean isEmpty() { return m.isEmpty(); } public int size() { return m.size(); } public void clear() { m.clear(); } public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Set)) return false; Collection<?> c = (Collection<?>) o; try { return containsAll(c) && c.containsAll(this); } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } } public Object[] toArray() { return toList(this).toArray(); } public <T> T[] toArray(T[] a) { return toList(this).toArray(a); } } /** * Submaps returned by {@link NonBlockingJavaSkipListMap} submap operations * represent a subrange of mappings of their underlying maps. Instances of * this class support all methods of their underlying maps, differing in * that mappings outside their range are ignored, and attempts to add * mappings outside their ranges result in {@link IllegalArgumentException}. * Instances of this class are constructed only using the <tt>subMap</tt>, * <tt>headMap</tt>, and <tt>tailMap</tt> methods of their underlying maps. * * @serial include */ static final class SubMap<K, V> extends AbstractMap<K, V> implements ConcurrentNavigableMap<K, V>, Cloneable, java.io.Serializable { private static final long serialVersionUID = -7647078645895051609L; /** Underlying map */ private final NonBlockingJavaSkipListMap<K, V> m; /** lower bound key, or null if from start */ private final K lo; /** upper bound key, or null if to end */ private final K hi; /** inclusion flag for lo */ private final boolean loInclusive; /** inclusion flag for hi */ private final boolean hiInclusive; /** direction */ private final boolean isDescending; // Lazily initialized view holders private transient KeySet<K> keySetView; private transient Set<Map.Entry<K, V>> entrySetView; private transient Collection<V> valuesView; /** * Creates a new submap, initializing all fields */ SubMap(NonBlockingJavaSkipListMap<K, V> map, K fromKey, boolean fromInclusive, K toKey, boolean toInclusive, boolean isDescending) { if (fromKey != null && toKey != null && map.compare(fromKey, toKey) > 0) throw new IllegalArgumentException("inconsistent range"); this.m = map; this.lo = fromKey; this.hi = toKey; this.loInclusive = fromInclusive; this.hiInclusive = toInclusive; this.isDescending = isDescending; } /* ---------------- Utilities -------------- */ private boolean tooLow(K key) { if (lo != null) { int c = m.compare(key, lo); if (c < 0 || (c == 0 && !loInclusive)) return true; } return false; } private boolean tooHigh(K key) { if (hi != null) { int c = m.compare(key, hi); if (c > 0 || (c == 0 && !hiInclusive)) return true; } return false; } private boolean inBounds(K key) { return !tooLow(key) && !tooHigh(key); } private void checkKeyBounds(K key) throws IllegalArgumentException { if (key == null) throw new NullPointerException(); if (!inBounds(key)) throw new IllegalArgumentException("key out of range"); } /** * Returns true if node key is less than upper bound of range */ private boolean isBeforeEnd(NonBlockingJavaSkipListMap.Node<K, V> n) { if (n == null) return false; if (hi == null) return true; K k = n.key; if (k == null) // pass by markers and headers return true; int c = m.compare(k, hi); if (c > 0 || (c == 0 && !hiInclusive)) return false; return true; } /** * Returns lowest node. This node might not be in range, so most usages * need to check bounds */ private NonBlockingJavaSkipListMap.Node<K, V> loNode() { if (lo == null) return m.findFirst(); else if (loInclusive) return m.findNear(lo, m.GT | m.EQ); else return m.findNear(lo, m.GT); } /** * Returns highest node. This node might not be in range, so most usages * need to check bounds */ private NonBlockingJavaSkipListMap.Node<K, V> hiNode() { if (hi == null) return m.findLast(); else if (hiInclusive) return m.findNear(hi, m.LT | m.EQ); else return m.findNear(hi, m.LT); } /** * Returns lowest absolute key (ignoring directonality) */ private K lowestKey() { NonBlockingJavaSkipListMap.Node<K, V> n = loNode(); if (isBeforeEnd(n)) return n.key; else throw new NoSuchElementException(); } /** * Returns highest absolute key (ignoring directonality) */ private K highestKey() { NonBlockingJavaSkipListMap.Node<K, V> n = hiNode(); if (n != null) { K last = n.key; if (inBounds(last)) return last; } throw new NoSuchElementException(); } private Map.Entry<K, V> lowestEntry() { for (;;) { NonBlockingJavaSkipListMap.Node<K, V> n = loNode(); if (!isBeforeEnd(n)) return null; Map.Entry<K, V> e = n.createSnapshot(); if (e != null) return e; } } private Map.Entry<K, V> highestEntry() { for (;;) { NonBlockingJavaSkipListMap.Node<K, V> n = hiNode(); if (n == null || !inBounds(n.key)) return null; Map.Entry<K, V> e = n.createSnapshot(); if (e != null) return e; } } private Map.Entry<K, V> removeLowest() { for (;;) { Node<K, V> n = loNode(); if (n == null) return null; K k = n.key; if (!inBounds(k)) return null; V v = m.doRemove(k, null); if (v != null) return new AbstractMap.SimpleImmutableEntry<K, V>(k, v); } } private Map.Entry<K, V> removeHighest() { for (;;) { Node<K, V> n = hiNode(); if (n == null) return null; K k = n.key; if (!inBounds(k)) return null; V v = m.doRemove(k, null); if (v != null) return new AbstractMap.SimpleImmutableEntry<K, V>(k, v); } } /** * Submap version of ConcurrentSkipListMap.getNearEntry */ private Map.Entry<K, V> getNearEntry(K key, int rel) { if (isDescending) { // adjust relation for direction if ((rel & m.LT) == 0) rel |= m.LT; else rel &= ~m.LT; } if (tooLow(key)) return ((rel & m.LT) != 0) ? null : lowestEntry(); if (tooHigh(key)) return ((rel & m.LT) != 0) ? highestEntry() : null; for (;;) { Node<K, V> n = m.findNear(key, rel); if (n == null || !inBounds(n.key)) return null; K k = n.key; V v = n.getValidValue(); if (v != null) return new AbstractMap.SimpleImmutableEntry<K, V>(k, v); } } // Almost the same as getNearEntry, except for keys private K getNearKey(K key, int rel) { if (isDescending) { // adjust relation for direction if ((rel & m.LT) == 0) rel |= m.LT; else rel &= ~m.LT; } if (tooLow(key)) { if ((rel & m.LT) == 0) { NonBlockingJavaSkipListMap.Node<K, V> n = loNode(); if (isBeforeEnd(n)) return n.key; } return null; } if (tooHigh(key)) { if ((rel & m.LT) != 0) { NonBlockingJavaSkipListMap.Node<K, V> n = hiNode(); if (n != null) { K last = n.key; if (inBounds(last)) return last; } } return null; } for (;;) { Node<K, V> n = m.findNear(key, rel); if (n == null || !inBounds(n.key)) return null; K k = n.key; V v = n.getValidValue(); if (v != null) return k; } } /* ---------------- Map API methods -------------- */ public boolean containsKey(Object key) { if (key == null) throw new NullPointerException(); K k = (K) key; return inBounds(k) && m.containsKey(k); } public V get(Object key) { if (key == null) throw new NullPointerException(); K k = (K) key; return ((!inBounds(k)) ? null : m.get(k)); } public V put(K key, V value) { checkKeyBounds(key); return m.put(key, value); } public V remove(Object key) { K k = (K) key; return (!inBounds(k)) ? null : m.remove(k); } public int size() { long count = 0; for (NonBlockingJavaSkipListMap.Node<K, V> n = loNode(); isBeforeEnd(n); n = n.next) { if (n.getValidValue() != null) ++count; } return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int) count; } public boolean isEmpty() { return !isBeforeEnd(loNode()); } public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); for (NonBlockingJavaSkipListMap.Node<K, V> n = loNode(); isBeforeEnd(n); n = n.next) { V v = n.getValidValue(); if (v != null && value.equals(v)) return true; } return false; } public void clear() { for (NonBlockingJavaSkipListMap.Node<K, V> n = loNode(); isBeforeEnd(n); n = n.next) { if (n.getValidValue() != null) m.remove(n.key); } } /* ---------------- ConcurrentMap API methods -------------- */ public V putIfAbsent(K key, V value) { checkKeyBounds(key); return m.putIfAbsent(key, value); } public boolean remove(Object key, Object value) { K k = (K) key; return inBounds(k) && m.remove(k, value); } public boolean replace(K key, V oldValue, V newValue) { checkKeyBounds(key); return m.replace(key, oldValue, newValue); } public V replace(K key, V value) { checkKeyBounds(key); return m.replace(key, value); } /* ---------------- SortedMap API methods -------------- */ public Comparator<? super K> comparator() { Comparator<? super K> cmp = m.comparator(); if (isDescending) return Collections.reverseOrder(cmp); else return cmp; } /** * Utility to create submaps, where given bounds override * unbounded(null) ones and/or are checked against bounded ones. */ private SubMap<K, V> newSubMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (isDescending) { // flip senses K tk = fromKey; fromKey = toKey; toKey = tk; boolean ti = fromInclusive; fromInclusive = toInclusive; toInclusive = ti; } if (lo != null) { if (fromKey == null) { fromKey = lo; fromInclusive = loInclusive; } else { int c = m.compare(fromKey, lo); if (c < 0 || (c == 0 && !loInclusive && fromInclusive)) throw new IllegalArgumentException("key out of range"); } } if (hi != null) { if (toKey == null) { toKey = hi; toInclusive = hiInclusive; } else { int c = m.compare(toKey, hi); if (c > 0 || (c == 0 && !hiInclusive && toInclusive)) throw new IllegalArgumentException("key out of range"); } } return new SubMap<K, V>(m, fromKey, fromInclusive, toKey, toInclusive, isDescending); } public SubMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (fromKey == null || toKey == null) throw new NullPointerException(); return newSubMap(fromKey, fromInclusive, toKey, toInclusive); } public SubMap<K, V> headMap(K toKey, boolean inclusive) { if (toKey == null) throw new NullPointerException(); return newSubMap(null, false, toKey, inclusive); } public SubMap<K, V> tailMap(K fromKey, boolean inclusive) { if (fromKey == null) throw new NullPointerException(); return newSubMap(fromKey, inclusive, null, false); } public SubMap<K, V> subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } public SubMap<K, V> headMap(K toKey) { return headMap(toKey, false); } public SubMap<K, V> tailMap(K fromKey) { return tailMap(fromKey, true); } public SubMap<K, V> descendingMap() { return new SubMap<K, V>(m, lo, loInclusive, hi, hiInclusive, !isDescending); } /* ---------------- Relational methods -------------- */ public Map.Entry<K, V> ceilingEntry(K key) { return getNearEntry(key, (m.GT | m.EQ)); } public K ceilingKey(K key) { return getNearKey(key, (m.GT | m.EQ)); } public Map.Entry<K, V> lowerEntry(K key) { return getNearEntry(key, (m.LT)); } public K lowerKey(K key) { return getNearKey(key, (m.LT)); } public Map.Entry<K, V> floorEntry(K key) { return getNearEntry(key, (m.LT | m.EQ)); } public K floorKey(K key) { return getNearKey(key, (m.LT | m.EQ)); } public Map.Entry<K, V> higherEntry(K key) { return getNearEntry(key, (m.GT)); } public K higherKey(K key) { return getNearKey(key, (m.GT)); } public K firstKey() { return isDescending ? highestKey() : lowestKey(); } public K lastKey() { return isDescending ? lowestKey() : highestKey(); } public Map.Entry<K, V> firstEntry() { return isDescending ? highestEntry() : lowestEntry(); } public Map.Entry<K, V> lastEntry() { return isDescending ? lowestEntry() : highestEntry(); } public Map.Entry<K, V> pollFirstEntry() { return isDescending ? removeHighest() : removeLowest(); } public Map.Entry<K, V> pollLastEntry() { return isDescending ? removeLowest() : removeHighest(); } /* ---------------- Submap Views -------------- */ public NavigableSet<K> keySet() { KeySet<K> ks = keySetView; return (ks != null) ? ks : (keySetView = new KeySet(this)); } public NavigableSet<K> navigableKeySet() { KeySet<K> ks = keySetView; return (ks != null) ? ks : (keySetView = new KeySet(this)); } public Collection<V> values() { Collection<V> vs = valuesView; return (vs != null) ? vs : (valuesView = new Values(this)); } public Set<Map.Entry<K, V>> entrySet() { Set<Map.Entry<K, V>> es = entrySetView; return (es != null) ? es : (entrySetView = new EntrySet(this)); } public NavigableSet<K> descendingKeySet() { return descendingMap().navigableKeySet(); } Iterator<K> keyIterator() { return new SubMapKeyIterator(); } Iterator<V> valueIterator() { return new SubMapValueIterator(); } Iterator<Map.Entry<K, V>> entryIterator() { return new SubMapEntryIterator(); } /** * Variant of main Iter class to traverse through submaps. */ abstract class SubMapIter<T> implements Iterator<T> { /** the last node returned by next() */ Node<K, V> lastReturned; /** the next node to return from next(); */ Node<K, V> next; /** Cache of next value field to maintain weak consistency */ V nextValue; SubMapIter() { for (;;) { next = isDescending ? hiNode() : loNode(); if (next == null) break; Object x = next.value; if (x != null && x != next) { if (!inBounds(next.key)) next = null; else nextValue = (V) x; break; } } } public final boolean hasNext() { return next != null; } final void advance() { if (next == null) throw new NoSuchElementException(); lastReturned = next; if (isDescending) descend(); else ascend(); } private void ascend() { for (;;) { next = next.next; if (next == null) break; Object x = next.value; if (x != null && x != next) { if (tooHigh(next.key)) next = null; else nextValue = (V) x; break; } } } private void descend() { for (;;) { next = m.findNear(lastReturned.key, LT); if (next == null) break; Object x = next.value; if (x != null && x != next) { if (tooLow(next.key)) next = null; else nextValue = (V) x; break; } } } public void remove() { Node<K, V> l = lastReturned; if (l == null) throw new IllegalStateException(); m.remove(l.key); lastReturned = null; } } final class SubMapValueIterator extends SubMapIter<V> { public V next() { V v = nextValue; advance(); return v; } } final class SubMapKeyIterator extends SubMapIter<K> { public K next() { Node<K, V> n = next; advance(); return n.key; } } final class SubMapEntryIterator extends SubMapIter<Map.Entry<K, V>> { public Map.Entry<K, V> next() { Node<K, V> n = next; V v = nextValue; advance(); return new AbstractMap.SimpleImmutableEntry<K, V>(n.key, v); } } } }