/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ package hashtables.lockbased; import java.io.IOException; import java.io.Serializable; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Enumeration; import java.util.HashMap; import java.util.Hashtable; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.locks.ReentrantLock; import contention.abstractions.CompositionalMap; import contention.abstractions.CompositionalMap.Vars; /** * A hash table supporting full concurrency of retrievals and adjustable * expected concurrency for updates. This class obeys the same functional * specification as {@link java.util.Hashtable}, and includes versions of * methods corresponding to each method of <tt>Hashtable</tt>. However, even * though all operations are thread-safe, retrieval operations do <em>not</em> * entail locking, and there is <em>not</em> any support for locking the entire * table in a way that prevents all access. This class is fully interoperable * with <tt>Hashtable</tt> in programs that rely on its thread safety but not on * its synchronization details. * * <p> * Retrieval operations (including <tt>get</tt>) generally do not block, so may * overlap with update operations (including <tt>put</tt> and <tt>remove</tt>). * Retrievals reflect the results of the most recently <em>completed</em> update * operations holding upon their onset. For aggregate operations such as * <tt>putAll</tt> and <tt>clear</tt>, concurrent retrievals may reflect * insertion or removal of only some entries. Similarly, Iterators and * Enumerations return elements reflecting the state of the hash table at some * point at or since the creation of the iterator/enumeration. They do * <em>not</em> throw {@link ConcurrentModificationException}. However, * iterators are designed to be used by only one thread at a time. * * <p> * The allowed concurrency among update operations is guided by the optional * <tt>concurrencyLevel</tt> constructor argument (default <tt>16</tt>), which * is used as a hint for internal sizing. The table is internally partitioned to * try to permit the indicated number of concurrent updates without contention. * Because placement in hash tables is essentially random, the actual * concurrency will vary. Ideally, you should choose a value to accommodate as * many threads as will ever concurrently modify the table. Using a * significantly higher value than you need can waste space and time, and a * significantly lower value can lead to thread contention. But overestimates * and underestimates within an order of magnitude do not usually have much * noticeable impact. A value of one is appropriate when it is known that only * one thread will modify and all others will only read. Also, resizing this or * any other kind of hash table is a relatively slow operation, so, when * possible, it is a good idea to provide estimates of expected table sizes in * constructors. * * <p> * This class and its views and iterators implement all of the <em>optional</em> * methods of the {@link Map} and {@link Iterator} interfaces. * * <p> * Like {@link Hashtable} but unlike {@link HashMap}, this class does * <em>not</em> allow <tt>null</tt> to be used as a key or value. * * <p> * This class is a member of the <a href="{@docRoot} * /../technotes/guides/collections/index.html"> Java Collections Framework</a>. * * @since 1.5 * @author Doug Lea * @param <K> * the type of keys maintained by this map * @param <V> * the type of mapped values */ public class LockBasedJavaHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V>, CompositionalMap<K, V>, Serializable { private static final long serialVersionUID = 7249069246763182397L; /* * The basic strategy is to subdivide the table among Segments, each of * which itself is a concurrently readable hash table. */ /* ---------------- Constants -------------- */ /** * The default initial capacity for this table, used when not otherwise * specified in a constructor. */ static final int DEFAULT_INITIAL_CAPACITY = 16; /** * The default load factor for this table, used when not otherwise specified * in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The default concurrency level for this table, used when not otherwise * specified in a constructor. */ static final int DEFAULT_CONCURRENCY_LEVEL = 64; /** * The maximum capacity, used if a higher value is implicitly specified by * either of the constructors with arguments. MUST be a power of two <= * 1<<30 to ensure that entries are indexable using ints. */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * The maximum number of segments to allow; used to bound constructor * arguments. */ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative /** * Number of unsynchronized retries in size and containsValue methods before * resorting to locking. This is used to avoid unbounded retries if tables * undergo continuous modification which would make it impossible to obtain * an accurate result. */ static final int RETRIES_BEFORE_LOCK = 2; /* ---------------- Fields -------------- */ /** * Mask value for indexing into segments. The upper bits of a key's hash * code are used to choose the segment. */ final int segmentMask; /** * Shift value for indexing within segments. */ final int segmentShift; /** * The segments, each of which is a specialized hash table */ final Segment<K, V>[] segments; transient Set<K> keySet; transient Set<Map.Entry<K, V>> entrySet; transient Collection<V> values; private int cap; private float loadFactor; /* ---------------- Small Utilities -------------- */ /** * Applies a supplemental hash function to a given hashCode, which defends * against poor quality hash functions. This is critical because * ConcurrentHashMap uses power-of-two length hash tables, that otherwise * encounter collisions for hashCodes that do not differ in lower or upper * bits. */ private static int hash(int h) { // Spread bits to regularize both segment and index locations, // using variant of single-word Wang/Jenkins hash. h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10); h += (h << 3); h ^= (h >>> 6); h += (h << 2) + (h << 14); return h ^ (h >>> 16); } /** * Returns the segment that should be used for key with given hash * * @param hash * the hash code for the key * @return the segment */ final Segment<K, V> segmentFor(int hash) { return segments[(hash >>> segmentShift) & segmentMask]; } /* ---------------- Inner Classes -------------- */ /** * ConcurrentHashMap list entry. Note that this is never exported out as a * user-visible Map.Entry. * * Because the value field is volatile, not final, it is legal wrt the Java * Memory Model for an unsynchronized reader to see null instead of initial * value when read via a data race. Although a reordering leading to this is * not likely to ever actually occur, the Segment.readValueUnderLock method * is used as a backup in case a null (pre-initialized) value is ever seen * in an unsynchronized access method. */ static final class HashEntry<K, V> { final K key; final int hash; volatile V value; final HashEntry<K, V> next; HashEntry(K key, int hash, HashEntry<K, V> next, V value) { this.key = key; this.hash = hash; this.next = next; this.value = value; } @SuppressWarnings("unchecked") static final <K, V> HashEntry<K, V>[] newArray(int i) { return new HashEntry[i]; } } /** * Segments are specialized versions of hash tables. This subclasses from * ReentrantLock opportunistically, just to simplify some locking and avoid * separate construction. */ static final class Segment<K, V> extends ReentrantLock implements Serializable { /* * Segments maintain a table of entry lists that are ALWAYS kept in a * consistent state, so can be read without locking. Next fields of * nodes are immutable (final). All list additions are performed at the * front of each bin. This makes it easy to check changes, and also fast * to traverse. When nodes would otherwise be changed, new nodes are * created to replace them. This works well for hash tables since the * bin lists tend to be short. (The average length is less than two for * the default load factor threshold.) * * Read operations can thus proceed without locking, but rely on * selected uses of volatiles to ensure that completed write operations * performed by other threads are noticed. For most purposes, the * "count" field, tracking the number of elements, serves as that * volatile variable ensuring visibility. This is convenient because * this field needs to be read in many read operations anyway: * * - All (unsynchronized) read operations must first read the "count" * field, and should not look at table entries if it is 0. * * - All (synchronized) write operations should write to the "count" * field after structurally changing any bin. The operations must not * take any action that could even momentarily cause a concurrent read * operation to see inconsistent data. This is made easier by the nature * of the read operations in Map. For example, no operation can reveal * that the table has grown but the threshold has not yet been updated, * so there are no atomicity requirements for this with respect to * reads. * * As a guide, all critical volatile reads and writes to the count field * are marked in code comments. */ private static final long serialVersionUID = 2249069246763182397L; /** * The number of elements in this segment's region. */ transient volatile int count; /** * Number of updates that alter the size of the table. This is used * during bulk-read methods to make sure they see a consistent snapshot: * If modCounts change during a traversal of segments computing size or * checking containsValue, then we might have an inconsistent view of * state so (usually) must retry. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. (The * value of this field is always <tt>(int)(capacity * * loadFactor)</tt>.) */ transient int threshold; /** * The per-segment table. */ transient volatile HashEntry<K, V>[] table; /** * The load factor for the hash table. Even though this value is same * for all segments, it is replicated to avoid needing links to outer * object. * * @serial */ final float loadFactor; Segment(int initialCapacity, float lf) { loadFactor = lf; setTable(HashEntry.<K, V> newArray(initialCapacity)); } @SuppressWarnings("unchecked") static final <K, V> Segment<K, V>[] newArray(int i) { return new Segment[i]; } /** * Sets table to new HashEntry array. Call only while holding lock or in * constructor. */ void setTable(HashEntry<K, V>[] newTable) { threshold = (int) (newTable.length * loadFactor); table = newTable; } /** * Returns properly casted first entry of bin for given hash. */ HashEntry<K, V> getFirst(int hash) { HashEntry<K, V>[] tab = table; return tab[hash & (tab.length - 1)]; } /** * Reads value field of an entry under lock. Called if value field ever * appears to be null. This is possible only if a compiler happens to * reorder a HashEntry initialization with its table assignment, which * is legal under memory model but is not known to ever occur. */ V readValueUnderLock(HashEntry<K, V> e) { System.out.println("in read under lock"); lock(); try { return e.value; } finally { unlock(); } } /* Specialized implementations of map methods */ void finishCount(int nodesTraversed) { Vars vars = counts.get(); vars.getCount++; vars.nodesTraversed += nodesTraversed; } V get(Object key, int hash) { int nodesTraversed = 0; if (count != 0) { // read-volatile HashEntry<K, V> e = getFirst(hash); if (TRAVERSAL_COUNT) { nodesTraversed++; } while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.value; if (TRAVERSAL_COUNT) { finishCount(nodesTraversed); } if (v != null) return v; return readValueUnderLock(e); // recheck } e = e.next; if (TRAVERSAL_COUNT) { nodesTraversed++; } } } if (TRAVERSAL_COUNT) { finishCount(nodesTraversed); } return null; } boolean containsKey(Object key, int hash) { if (count != 0) { // read-volatile HashEntry<K, V> e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) return true; e = e.next; } } return false; } boolean containsValue(Object value) { if (count != 0) { // read-volatile HashEntry<K, V>[] tab = table; int len = tab.length; for (int i = 0; i < len; i++) { for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) { V v = e.value; if (v == null) // recheck v = readValueUnderLock(e); if (value.equals(v)) return true; } } } return false; } boolean replace(K key, int hash, V oldValue, V newValue) { lock(); try { HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; boolean replaced = false; if (e != null && oldValue.equals(e.value)) { replaced = true; e.value = newValue; } return replaced; } finally { unlock(); } } V replace(K key, int hash, V newValue) { lock(); try { HashEntry<K, V> e = getFirst(hash); while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue = null; if (e != null) { oldValue = e.value; e.value = newValue; } return oldValue; } finally { unlock(); } } V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); try { int c = count; if (c++ > threshold) // ensure capacity rehash(); HashEntry<K, V>[] tab = table; int index = hash & (tab.length - 1); HashEntry<K, V> first = tab[index]; HashEntry<K, V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) { oldValue = e.value; if (!onlyIfAbsent) e.value = value; } else { oldValue = null; ++modCount; tab[index] = new HashEntry<K, V>(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { unlock(); } } void rehash() { HashEntry<K, V>[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity >= MAXIMUM_CAPACITY) return; /* * Reclassify nodes in each list to new Map. Because we are using * power-of-two expansion, the elements from each bin must either * stay at same index, or move with a power of two offset. We * eliminate unnecessary node creation by catching cases where old * nodes can be reused because their next fields won't change. * Statistically, at the default threshold, only about one-sixth of * them need cloning when a table doubles. The nodes they replace * will be garbage collectable as soon as they are no longer * referenced by any reader thread that may be in the midst of * traversing table right now. */ // System.out.println("rehash"); if (STRUCT_MODS) counts.get().structMods += 1; HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1); threshold = (int) (newTable.length * loadFactor); int sizeMask = newTable.length - 1; for (int i = 0; i < oldCapacity; i++) { // We need to guarantee that any existing reads of old Map can // proceed. So we cannot yet null out each bin. HashEntry<K, V> e = oldTable[i]; if (e != null) { HashEntry<K, V> next = e.next; int idx = e.hash & sizeMask; // Single node on list if (next == null) newTable[idx] = e; else { // Reuse trailing consecutive sequence at same slot HashEntry<K, V> lastRun = e; int lastIdx = idx; for (HashEntry<K, V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone all remaining nodes for (HashEntry<K, V> p = e; p != lastRun; p = p.next) { int k = p.hash & sizeMask; HashEntry<K, V> n = newTable[k]; newTable[k] = new HashEntry<K, V>(p.key, p.hash, n, p.value); } } } } table = newTable; } /** * Remove; match on key only if value null, else match both. */ V remove(Object key, int hash, Object value) { lock(); try { int c = count - 1; HashEntry<K, V>[] tab = table; int index = hash & (tab.length - 1); HashEntry<K, V> first = tab[index]; HashEntry<K, V> e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue = null; if (e != null) { V v = e.value; if (value == null || value.equals(v)) { oldValue = v; // All entries following removed node can stay // in list, but all preceding ones need to be // cloned. ++modCount; HashEntry<K, V> newFirst = e.next; for (HashEntry<K, V> p = first; p != e; p = p.next) newFirst = new HashEntry<K, V>(p.key, p.hash, newFirst, p.value); tab[index] = newFirst; count = c; // write-volatile } } return oldValue; } finally { unlock(); } } void clear() { if (count != 0) { lock(); try { HashEntry<K, V>[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; ++modCount; count = 0; // write-volatile } finally { unlock(); } } } } /* ---------------- Public operations -------------- */ /** * Creates a new, empty map with the specified initial capacity, load factor * and concurrency level. * * @param initialCapacity * the initial capacity. The implementation performs internal * sizing to accommodate this many elements. * @param loadFactor * the load factor threshold, used to control resizing. Resizing * may be performed when the average number of elements per bin * exceeds this threshold. * @param concurrencyLevel * the estimated number of concurrently updating threads. The * implementation performs internal sizing to try to accommodate * this many threads. * @throws IllegalArgumentException * if the initial capacity is negative or the load factor or * concurrencyLevel are nonpositive. */ public LockBasedJavaHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } segmentShift = 32 - sshift; segmentMask = ssize - 1; this.segments = Segment.newArray(ssize); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; this.cap = 1; while (cap < c) cap <<= 1; this.loadFactor = loadFactor; for (int i = 0; i < this.segments.length; ++i) this.segments[i] = new Segment<K, V>(cap, loadFactor); } /** * Creates a new, empty map with the specified initial capacity and load * factor and with the default concurrencyLevel (16). * * @param initialCapacity * The implementation performs internal sizing to accommodate * this many elements. * @param loadFactor * the load factor threshold, used to control resizing. Resizing * may be performed when the average number of elements per bin * exceeds this threshold. * @throws IllegalArgumentException * if the initial capacity of elements is negative or the load * factor is nonpositive * * @since 1.6 */ public LockBasedJavaHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with the specified initial capacity, and with * default load factor (0.75) and concurrencyLevel (16). * * @param initialCapacity * the initial capacity. The implementation performs internal * sizing to accommodate this many elements. * @throws IllegalArgumentException * if the initial capacity of elements is negative. */ public LockBasedJavaHashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new, empty map with a default initial capacity (16), load * factor (0.75) and concurrencyLevel (16). */ public LockBasedJavaHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } /** * Creates a new map with the same mappings as the given map. The map is * created with a capacity of 1.5 times the number of mappings in the given * map or 16 (whichever is greater), and a default load factor (0.75) and * concurrencyLevel (16). * * @param m * the map */ public LockBasedJavaHashMap(Map<? extends K, ? extends V> m) { this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); putAll(m); } /** * Returns <tt>true</tt> if this map contains no key-value mappings. * * @return <tt>true</tt> if this map contains no key-value mappings */ public boolean isEmpty() { final Segment<K, V>[] segments = this.segments; /* * We keep track of per-segment modCounts to avoid ABA problems in which * an element in one segment was added and in another removed during * traversal, in which case the table was never actually empty at any * point. Note the similar use of modCounts in the size() and * containsValue() methods, which are the only other methods also * susceptible to ABA problems. */ int[] mc = new int[segments.length]; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0) return false; else mcsum += mc[i] = segments[i].modCount; } // If mcsum happens to be zero, then we know we got a snapshot // before any modifications at all were made. This is // probably common enough to bother tracking. if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { if (segments[i].count != 0 || mc[i] != segments[i].modCount) return false; } } return true; } /** * Returns the number of key-value mappings in this map. If the map contains * more than <tt>Integer.MAX_VALUE</tt> elements, returns * <tt>Integer.MAX_VALUE</tt>. * * @return the number of key-value mappings in this map */ public int size() { final Segment<K, V>[] segments = this.segments; long sum = 0; long check = 0; int[] mc = new int[segments.length]; // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { check = 0; sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { sum += segments[i].count; mcsum += mc[i] = segments[i].modCount; } if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { check += segments[i].count; if (mc[i] != segments[i].modCount) { check = -1; // force retry break; } } } if (check == sum) break; } if (check != sum) { // Resort to locking all segments sum = 0; for (int i = 0; i < segments.length; ++i) segments[i].lock(); for (int i = 0; i < segments.length; ++i) sum += segments[i].count; for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } if (sum > Integer.MAX_VALUE) return Integer.MAX_VALUE; else return (int) sum; } /** * Returns the value to which the specified key is mapped, or {@code null} * if this map contains no mapping for the key. * * <p> * More formally, if this map contains a mapping from a key {@code k} to a * value {@code v} such that {@code key.equals(k)}, then this method returns * {@code v}; otherwise it returns {@code null}. (There can be at most one * such mapping.) * * @throws NullPointerException * if the specified key is null */ public V get(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).get(key, hash); } /** * Tests if the specified object is a key in this table. * * @param key * possible key * @return <tt>true</tt> if and only if the specified object is a key in * this table, as determined by the <tt>equals</tt> method; * <tt>false</tt> otherwise. * @throws NullPointerException * if the specified key is null */ public boolean containsKey(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).containsKey(key, hash); } /** * Returns <tt>true</tt> if this map maps one or more keys to the specified * value. Note: This method requires a full internal traversal of the hash * table, and so is much slower than method <tt>containsKey</tt>. * * @param value * value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the specified * value * @throws NullPointerException * if the specified value is null */ public boolean containsValue(Object value) { if (value == null) throw new NullPointerException(); // See explanation of modCount use above final Segment<K, V>[] segments = this.segments; int[] mc = new int[segments.length]; // Try a few times without locking for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) { int sum = 0; int mcsum = 0; for (int i = 0; i < segments.length; ++i) { int c = segments[i].count; mcsum += mc[i] = segments[i].modCount; if (segments[i].containsValue(value)) return true; } boolean cleanSweep = true; if (mcsum != 0) { for (int i = 0; i < segments.length; ++i) { int c = segments[i].count; if (mc[i] != segments[i].modCount) { cleanSweep = false; break; } } } if (cleanSweep) return false; } // Resort to locking all segments for (int i = 0; i < segments.length; ++i) segments[i].lock(); boolean found = false; try { for (int i = 0; i < segments.length; ++i) { if (segments[i].containsValue(value)) { found = true; break; } } } finally { for (int i = 0; i < segments.length; ++i) segments[i].unlock(); } return found; } /** * Legacy method testing if some key maps into the specified value in this * table. This method is identical in functionality to * {@link #containsValue}, and exists solely to ensure full compatibility * with class {@link java.util.Hashtable}, which supported this method prior * to introduction of the Java Collections framework. * * @param value * a value to search for * @return <tt>true</tt> if and only if some key maps to the <tt>value</tt> * argument in this table as determined by the <tt>equals</tt> * method; <tt>false</tt> otherwise * @throws NullPointerException * if the specified value is null */ public boolean contains(Object value) { return containsValue(value); } /** * Maps the specified key to the specified value in this table. Neither the * key nor the value can be null. * * <p> * The value can be retrieved by calling the <tt>get</tt> method with a key * that is equal to the original key. * * @param key * key with which the specified value is to be associated * @param value * value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or <tt>null</tt> * if there was no mapping for <tt>key</tt> * @throws NullPointerException * if the specified key or value is null */ public V put(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, value, false); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or * <tt>null</tt> if there was no mapping for the key * @throws NullPointerException * if the specified key or value is null */ public V putIfAbsent(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).put(key, hash, value, true); } /** * Copies all of the mappings from the specified map to this one. These * mappings replace any mappings that this map had for any of the keys * currently in the specified map. * * @param m * mappings to be stored in this map */ public void putAll(Map<? extends K, ? extends V> m) { for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * Removes the key (and its corresponding value) from this map. This method * does nothing if the key is not in the map. * * @param key * the key that needs to be removed * @return the previous value associated with <tt>key</tt>, or <tt>null</tt> * if there was no mapping for <tt>key</tt> * @throws NullPointerException * if the specified key is null */ public V remove(Object key) { int hash = hash(key.hashCode()); return segmentFor(hash).remove(key, hash, null); } /** * {@inheritDoc} * * @throws NullPointerException * if the specified key is null */ public boolean remove(Object key, Object value) { int hash = hash(key.hashCode()); if (value == null) return false; return segmentFor(hash).remove(key, hash, value) != null; } /** * {@inheritDoc} * * @throws NullPointerException * if any of the arguments are null */ public boolean replace(K key, V oldValue, V newValue) { if (oldValue == null || newValue == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, oldValue, newValue); } /** * {@inheritDoc} * * @return the previous value associated with the specified key, or * <tt>null</tt> if there was no mapping for the key * @throws NullPointerException * if the specified key or value is null */ public V replace(K key, V value) { if (value == null) throw new NullPointerException(); int hash = hash(key.hashCode()); return segmentFor(hash).replace(key, hash, value); } /** * Removes all of the mappings from this map. */ public void clear() { for (int i = 0; i < segments.length; ++i) // segments[i].clear(); // want a real clear this.segments[i] = new Segment<K, V>(cap, loadFactor); } /** * Returns a {@link Set} view of the keys contained in this map. The set is * backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from this map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and * <tt>clear</tt> operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * <p> * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. */ public Set<K> keySet() { Set<K> ks = keySet; return (ks != null) ? ks : (keySet = new KeySet()); } /** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are reflected * in the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from this map, via the * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, <tt>removeAll</tt>, * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support * the <tt>add</tt> or <tt>addAll</tt> operations. * * <p> * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. */ public Collection<V> values() { Collection<V> vs = values; return (vs != null) ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. The set * is backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from the map, via the <tt>Iterator.remove</tt>, * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and * <tt>clear</tt> operations. It does not support the <tt>add</tt> or * <tt>addAll</tt> operations. * * <p> * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will * never throw {@link ConcurrentModificationException}, and guarantees to * traverse elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications subsequent to * construction. */ public Set<Map.Entry<K, V>> entrySet() { Set<Map.Entry<K, V>> es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * Returns an enumeration of the keys in this table. * * @return an enumeration of the keys in this table * @see #keySet() */ public Enumeration<K> keys() { return new KeyIterator(); } /** * Returns an enumeration of the values in this table. * * @return an enumeration of the values in this table * @see #values() */ public Enumeration<V> elements() { return new ValueIterator(); } /* ---------------- Iterator Support -------------- */ abstract class HashIterator { int nextSegmentIndex; int nextTableIndex; HashEntry<K, V>[] currentTable; HashEntry<K, V> nextEntry; HashEntry<K, V> lastReturned; HashIterator() { nextSegmentIndex = segments.length - 1; nextTableIndex = -1; advance(); } public boolean hasMoreElements() { return hasNext(); } final void advance() { if (nextEntry != null && (nextEntry = nextEntry.next) != null) return; while (nextTableIndex >= 0) { if ((nextEntry = currentTable[nextTableIndex--]) != null) return; } while (nextSegmentIndex >= 0) { Segment<K, V> seg = segments[nextSegmentIndex--]; if (seg.count != 0) { currentTable = seg.table; for (int j = currentTable.length - 1; j >= 0; --j) { if ((nextEntry = currentTable[j]) != null) { nextTableIndex = j - 1; return; } } } } } public boolean hasNext() { return nextEntry != null; } HashEntry<K, V> nextEntry() { if (nextEntry == null) throw new NoSuchElementException(); lastReturned = nextEntry; advance(); return lastReturned; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); LockBasedJavaHashMap.this.remove(lastReturned.key); lastReturned = null; } } final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> { public K next() { return super.nextEntry().key; } public K nextElement() { return super.nextEntry().key; } } final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> { public V next() { return super.nextEntry().value; } public V nextElement() { return super.nextEntry().value; } } /** * Custom Entry class used by EntryIterator.next(), that relays setValue * changes to the underlying map. */ final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> { WriteThroughEntry(K k, V v) { super(k, v); } /** * Set our entry's value and write through to the map. The value to * return is somewhat arbitrary here. Since a WriteThroughEntry does not * necessarily track asynchronous changes, the most recent "previous" * value could be different from what we return (or could even have been * removed in which case the put will re-establish). We do not and * cannot guarantee more. */ public V setValue(V value) { if (value == null) throw new NullPointerException(); V v = super.setValue(value); LockBasedJavaHashMap.this.put(getKey(), value); return v; } } final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> { public Map.Entry<K, V> next() { HashEntry<K, V> e = super.nextEntry(); return new WriteThroughEntry(e.key, e.value); } } final class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return new KeyIterator(); } public int size() { return LockBasedJavaHashMap.this.size(); } public boolean isEmpty() { return LockBasedJavaHashMap.this.isEmpty(); } public boolean contains(Object o) { return LockBasedJavaHashMap.this.containsKey(o); } public boolean remove(Object o) { return LockBasedJavaHashMap.this.remove(o) != null; } public void clear() { LockBasedJavaHashMap.this.clear(); } } final class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return new ValueIterator(); } public int size() { return LockBasedJavaHashMap.this.size(); } public boolean isEmpty() { return LockBasedJavaHashMap.this.isEmpty(); } public boolean contains(Object o) { return LockBasedJavaHashMap.this.containsValue(o); } public void clear() { LockBasedJavaHashMap.this.clear(); } } final class EntrySet extends AbstractSet<Map.Entry<K, V>> { public Iterator<Map.Entry<K, V>> iterator() { return new EntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; V v = LockBasedJavaHashMap.this.get(e.getKey()); return v != null && v.equals(e.getValue()); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; return LockBasedJavaHashMap.this.remove(e.getKey(), e.getValue()); } public int size() { return LockBasedJavaHashMap.this.size(); } public boolean isEmpty() { return LockBasedJavaHashMap.this.isEmpty(); } public void clear() { LockBasedJavaHashMap.this.clear(); } } /* ---------------- Serialization Support -------------- */ /** * Save the state of the <tt>ConcurrentHashMap</tt> instance to a stream * (i.e., serialize it). * * @param s * the stream * @serialData the key (Object) and value (Object) for each key-value * mapping, followed by a null pair. The key-value mappings are * emitted in no particular order. */ private void writeObject(java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); for (int k = 0; k < segments.length; ++k) { Segment<K, V> seg = segments[k]; seg.lock(); try { HashEntry<K, V>[] tab = seg.table; for (int i = 0; i < tab.length; ++i) { for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) { s.writeObject(e.key); s.writeObject(e.value); } } } finally { seg.unlock(); } } s.writeObject(null); s.writeObject(null); } /** * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a stream (i.e., * deserialize it). * * @param s * the stream */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { s.defaultReadObject(); // Initialize each segment to be minimally sized, and let grow. for (int i = 0; i < segments.length; ++i) { segments[i].setTable(new HashEntry[1]); } // Read the keys and values, and put the mappings in the table for (;;) { K key = (K) s.readObject(); V value = (V) s.readObject(); if (key == null) break; put(key, value); } } }