/** * ***************************************************************************** * Copyright (c) 2012 Johannes Mitlmeier. All rights reserved. This program and * the accompanying materials are made available under the terms of the GNU * Affero Public License v3.0 which accompanies this distribution, and is * available at http://www.gnu.org/licenses/agpl-3.0.html * * Contributors: Johannes Mitlmeier - initial API and implementation * **************************************************************************** */ package de.fub.agg2graph.agg.strategy; import de.fub.agg2graph.agg.AggConnection; import de.fub.agg2graph.agg.AggNode; import de.fub.agg2graph.agg.AggregationStrategyFactory; import de.fub.agg2graph.agg.IMergeHandler; import de.fub.agg2graph.agg.MergeHandlerFactory; import de.fub.agg2graph.agg.TraceDistanceFactory; import de.fub.agg2graph.management.MyStatistic; import de.fub.agg2graph.structs.BoundedQueue; import de.fub.agg2graph.structs.GPSCalc; import de.fub.agg2graph.structs.GPSPoint; import de.fub.agg2graph.structs.GPSSegment; import de.fub.agg2graph.structs.ILocation; import java.text.MessageFormat; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import java.util.Set; public class PathScoreMatchDefaultMergeStrategy extends AbstractAggregationStrategy { MyStatistic statistic; int counter = 1; private int maxLookahead = 7; private double maxPathDifference = 1000; private double maxInitDistance = 150;//12.5 List<AggNode> lastNodes = new ArrayList<AggNode>(); List<GPSSegment> lastNewNodes = new ArrayList<GPSSegment>(); public enum State { NO_MATCH, IN_MATCH } private State state = State.NO_MATCH; /** * Preferably use the {@link AggregationStrategyFactory} for creating * instances of this class. */ public PathScoreMatchDefaultMergeStrategy() { statistic = new MyStatistic( "agg2graph/test/exp/Evaluation-DefaultMatchDefaultMerge.txt"); TraceDistanceFactory.setClass(PathScoreDistance.class); traceDistance = TraceDistanceFactory.getObject(); MergeHandlerFactory.setClass(WeightedClosestPointMerge.class); baseMergeHandler = MergeHandlerFactory.getObject(); } /** * @return the maxLookahead */ public int getMaxLookahead() { return maxLookahead; } /** * @param maxLookahead the maxLookahead to set */ public void setMaxLookahead(int maxLookahead) { this.maxLookahead = maxLookahead; } /** * @return the maxPathDifference */ public double getMaxPathDifference() { return maxPathDifference; } /** * @param maxPathDifference the maxPathDifference to set */ public void setMaxPathDifference(double maxPathDifference) { this.maxPathDifference = maxPathDifference; } /** * @return the maxInitDistance */ public double getMaxInitDistance() { return maxInitDistance; } /** * @param maxInitDistance the maxInitDistance to set */ public void setMaxInitDistance(double maxInitDistance) { this.maxInitDistance = maxInitDistance; } @Override public void aggregate(GPSSegment segment, boolean isAgg) { // reset all attributes lastNode = null; mergeHandler = null; matches = new ArrayList<IMergeHandler>(); state = State.NO_MATCH; // insert first segment without changes (assuming somewhat cleaned // data!) // attention: node counter is not necessarily accurate! // if (aggContainer.getCachingStrategy() == null || aggContainer.getCachingStrategy().getNodeCount() == 0 || isAgg) { int i = 0; clear(); while (i < segment.size()) { GPSPoint pointI = segment.get(i); AggNode node = new AggNode(pointI, aggContainer); node.setK(pointI.getK()); node.setRelevant(pointI.isRelevant()); node.setID(MessageFormat.format("A-{0}", pointI.getID())); addNodeToAgg(aggContainer, node); lastNode = node; i++; } lastNodes.add(lastNode); return; } BoundedQueue<ILocation> lastParsedCurrentPoints = new BoundedQueue<ILocation>( 5); int i = 0; while (i < segment.size()) { // step 1: find starting point // get close points, within 10 meters (merge candidates) Set<AggNode> nearPoints = null; GPSPoint currentPoint = segment.get(i); // no progress? (should not be necessary) if (lastParsedCurrentPoints.size() > 2 && lastParsedCurrentPoints.get( lastParsedCurrentPoints.size() - 1).equals( currentPoint) && lastParsedCurrentPoints.get( lastParsedCurrentPoints.size() - 2).equals( currentPoint)) { i++; continue; } lastParsedCurrentPoints.offer(currentPoint); State lastState = state; // get all close points, but none that are already in the current // match (because we would kinda search backwards) nearPoints = aggContainer.getCachingStrategy().getCloseNodes( currentPoint, maxInitDistance); if (mergeHandler != null) { List<AggNode> nodes = mergeHandler.getAggNodes(); for (int j = 0; j < nodes.size() - 1; j++) { nearPoints.remove(nodes.get(j)); } } /* Tinus - Filtering near points */ nearPoints = filterNearPoints(nearPoints); boolean isMatch = true; if (nearPoints.isEmpty()) { isMatch = false; state = State.NO_MATCH; } else { // there is candidates for a match start List<List<AggNode>> paths = getPathsByDepth(nearPoints, 1, maxLookahead); /* Tinus - Filtering Paths */ for (List<AggNode> path : paths) { filterPath(path); } // evaluate paths, pick best, continue double bestDifference = Double.MAX_VALUE, difference; int length; List<AggNode> bestPath = null; int bestPathLength = 0; for (List<AggNode> path : paths) { Object[] returnValues = traceDistance.getPathDifference(path, segment, i, mergeHandler); difference = (Double) returnValues[0]; length = (int) Math.round(Double.valueOf(returnValues[1] .toString())); if (difference < bestDifference || (difference == bestDifference && length > bestPathLength)) { bestDifference = difference; bestPathLength = length; bestPath = path; if (bestPath.isEmpty()) { int j = i; i = j; } } } // do we have a successful match? if (bestDifference >= maxPathDifference || bestPath == null) { isMatch = false; } else if (bestPath.size() <= 1 && bestPathLength <= 1) { isMatch = false; } state = isMatch ? State.IN_MATCH : State.NO_MATCH; if (isMatch) { // make a merge handler if the match would start here if (lastState == State.NO_MATCH) { mergeHandler = baseMergeHandler.getCopy(); mergeHandler.setAggContainer(aggContainer); } mergeHandler.addAggNodes(bestPath); mergeHandler.addGPSPoints(segment.subList(i, i + bestPathLength)); mergeHandler.setDistance(bestDifference); i = i + bestPathLength - 1; } } if (!isMatch && (lastState == State.IN_MATCH && (state == State.NO_MATCH || i == segment .size() - 1))) { finishMatch(); } else if (!isMatch && lastState == State.NO_MATCH) { // if there is no close points or no valid match, add it to the // aggregation AggNode node = new AggNode(currentPoint, aggContainer); node.setID("A-" + currentPoint.getID()); node.setK(1); addNodeToAgg(aggContainer, node); lastNode = node; i++; } } // New Segment if (getAddAllowed() && lastNode != null) { List<AggNode> newSegment = new ArrayList<AggNode>(); AggNode currentLast = lastNode; newSegment.add(0, currentLast); while (!lastNode.getIn().isEmpty()) { lastNode = lastNode.getIn().iterator().next().getFrom(); if (GPSCalc.getDistanceTwoPointsMeter(currentLast, lastNode) < 100) { newSegment.add(0, lastNode); } else { if (newSegment.size() > 1) { lastNewNodes.add(new GPSSegment(newSegment)); } newSegment = new ArrayList<AggNode>(); } currentLast = lastNode; } if (newSegment.size() > 1) { lastNewNodes.add(new GPSSegment(newSegment)); } } // step 2 and 3 of 3: ghost points, merge everything System.out.println(MessageFormat.format("{0}. MATCHES : {1}", counter, matches.size())); System.out.println(MessageFormat.format("New Segment : {0}", getAddAllowed())); for (IMergeHandler match : matches) { if (!match.isEmpty()) { match.mergePoints(); } } } private static void filterPath(List<AggNode> path) { boolean found = false; for (int i = 0; i < path.size(); i++) { if (!found && !path.get(i).isRelevant()) { found = true; } else if (found) { path.remove(i); i--; } } } private Set<AggNode> filterNearPoints(Set<AggNode> nearPoints) { Iterator<AggNode> nearIt = nearPoints.iterator(); while (nearIt.hasNext()) { if (!nearIt.next().isRelevant()) { nearIt.remove(); } } return nearPoints; } protected void finishMatch() { // last match is over now matches.add(mergeHandler); mergeHandler.processSubmatch(); /* * connect to previous node lastNode is the last non-matched node or the * outNode of the last match */ aggContainer.connect(lastNode, mergeHandler.getInNode()); mergeHandler.setBeforeNode(lastNode); // remember outgoing node (for later connection) lastNode = mergeHandler.getOutNode(); } /* * reverse paths */ private List<List<AggNode>> getPathsByDepth(Set<AggNode> nearPoints, int minDepth, int maxDepth) { List<List<AggNode>> paths = new ArrayList<List<AggNode>>(); for (AggNode startNode : nearPoints) { List<AggNode> path = new ArrayList<AggNode>(); path.add(startNode); addPaths(paths, path, 1, minDepth, maxDepth); } return paths; } private void addPaths(List<List<AggNode>> paths, List<AggNode> path, int depth, int minDepth, int maxDepth) { if (depth > maxDepth) { return; } // add out nodes // TODO load node if necessary instead of null check if (path.get(depth - 1).getOut() != null) { for (AggConnection outConn : path.get(depth - 1).getOut()) { AggNode outNode = outConn.getTo(); path.add(outNode); if (depth >= minDepth) { ArrayList<AggNode> pathCopy = new ArrayList<AggNode>(); pathCopy.addAll(path); paths.add(pathCopy); } addPaths(paths, path, depth + 1, minDepth, maxDepth); path.remove(path.size() - 1); } } } @Override public String toString() { return "DefaultMatch-AttractionMerge"; } private static final long MEGABYTE = 1024L * 1024L; public static long bytesToMegabytes(long bytes) { return bytes / MEGABYTE; } }