/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ package org.opentripplanner.routing.spt; import java.util.ArrayList; import java.util.Collection; import java.util.IdentityHashMap; import java.util.Iterator; import java.util.List; import java.util.Map; import java.util.Set; import org.opentripplanner.common.MavenVersion; import org.opentripplanner.routing.core.State; import org.opentripplanner.routing.core.RoutingRequest; import org.opentripplanner.routing.graph.Vertex; public class MultiShortestPathTree extends AbstractShortestPathTree { private static final long serialVersionUID = MavenVersion.VERSION.getUID(); public static final ShortestPathTreeFactory FACTORY = new FactoryImpl(); private Map<Vertex, List<State>> stateSets; public MultiShortestPathTree(RoutingRequest options) { super(options); stateSets = new IdentityHashMap<Vertex, List<State>>(); } public Set<Vertex> getVertices() { return stateSets.keySet(); } /**** * {@link ShortestPathTree} Interface ****/ @Override public boolean add(State newState) { Vertex vertex = newState.getVertex(); List<State> states = stateSets.get(vertex); if (states == null) { states = new ArrayList<State>(); stateSets.put(vertex, states); states.add(newState); return true; } Iterator<State> it = states.iterator(); while (it.hasNext()) { State oldState = it.next(); // order is important, because in the case of a tie // we want to reject the new state if (oldState.dominates(newState)) return false; if (newState.dominates(oldState)) it.remove(); } states.add(newState); return true; } @Override public State getState(Vertex dest) { Collection<State> states = stateSets.get(dest); if (states == null) return null; State ret = null; for (State s : states) { if ((ret == null || s.betterThan(ret)) && s.isFinal() && s.allPathParsersAccept()) { ret = s; } } return ret; } @Override public List<State> getStates(Vertex dest) { return stateSets.get(dest); } @Override public int getVertexCount() { return stateSets.keySet().size(); } /** * Check that a state coming out of the queue is still in the Pareto-optimal set for this vertex, * which indicates that it has not been ruled out as a state on an optimal path. Many shortest * path algorithms will decrease the key of an entry in the priority queue when it is updated, or * remove it when it is dominated. * * When the Fibonacci heap was replaced with a binary heap, the decrease-key operation was * removed for the same reason: both improve theoretical run time complexity, at the cost of * high constant factors and more complex code. * * So there can be dominated (useless) states in the queue. When they come out we want to * ignore them rather than spend time branching out from them. */ @Override public boolean visit(State state) { boolean ret = false; for (State s : stateSets.get(state.getVertex())) { if (s == state) { ret = true; break; } } return ret; } public String toString() { return "MultiSPT(" + this.stateSets.size() + " vertices)"; } private static final class FactoryImpl implements ShortestPathTreeFactory { @Override public ShortestPathTree create(RoutingRequest options) { return new MultiShortestPathTree(options); } } @Override public Collection<State> getAllStates() { ArrayList<State> allStates = new ArrayList<State>(); for (List<State> stateSet : stateSets.values()) { allStates.addAll(stateSet); } return allStates; } }