/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package hivemall.utils.collections; import hivemall.utils.math.Primes; import java.io.Externalizable; import java.io.IOException; import java.io.ObjectInput; import java.io.ObjectOutput; import java.util.Arrays; import java.util.HashMap; import javax.annotation.Nonnull; /** * An open-addressing hash table with double-hashing that requires less memory to {@link HashMap}. */ public final class IntOpenHashTable<V> implements Externalizable { public static final float DEFAULT_LOAD_FACTOR = 0.7f; public static final float DEFAULT_GROW_FACTOR = 2.0f; public static final byte FREE = 0; public static final byte FULL = 1; public static final byte REMOVED = 2; protected/* final */float _loadFactor; protected/* final */float _growFactor; protected int _used = 0; protected int _threshold; protected int[] _keys; protected V[] _values; protected byte[] _states; public IntOpenHashTable() {} // for Externalizable public IntOpenHashTable(int size) { this(size, DEFAULT_LOAD_FACTOR, DEFAULT_GROW_FACTOR); } @SuppressWarnings("unchecked") public IntOpenHashTable(int size, float loadFactor, float growFactor) { if (size < 1) { throw new IllegalArgumentException(); } this._loadFactor = loadFactor; this._growFactor = growFactor; int actualSize = Primes.findLeastPrimeNumber(size); this._keys = new int[actualSize]; this._values = (V[]) new Object[actualSize]; this._states = new byte[actualSize]; this._threshold = Math.round(actualSize * _loadFactor); } public IntOpenHashTable(@Nonnull int[] keys, @Nonnull V[] values, @Nonnull byte[] states, int used) { this._used = used; this._threshold = keys.length; this._keys = keys; this._values = values; this._states = states; } public int[] getKeys() { return _keys; } public Object[] getValues() { return _values; } public byte[] getStates() { return _states; } public boolean containsKey(final int key) { return findKey(key) >= 0; } public V get(final int key) { final int i = findKey(key); if (i < 0) { return null; } return _values[i]; } public V put(final int key, final V value) { final int hash = keyHash(key); int keyLength = _keys.length; int keyIdx = hash % keyLength; boolean expanded = preAddEntry(keyIdx); if (expanded) { keyLength = _keys.length; keyIdx = hash % keyLength; } final int[] keys = _keys; final V[] values = _values; final byte[] states = _states; if (states[keyIdx] == FULL) { if (keys[keyIdx] == key) { V old = values[keyIdx]; values[keyIdx] = value; return old; } // try second hash int decr = 1 + (hash % (keyLength - 2)); for (;;) { keyIdx -= decr; if (keyIdx < 0) { keyIdx += keyLength; } if (isFree(keyIdx, key)) { break; } if (states[keyIdx] == FULL && keys[keyIdx] == key) { V old = values[keyIdx]; values[keyIdx] = value; return old; } } } keys[keyIdx] = key; values[keyIdx] = value; states[keyIdx] = FULL; ++_used; return null; } /** Return weather the required slot is free for new entry */ protected boolean isFree(int index, int key) { byte stat = _states[index]; if (stat == FREE) { return true; } if (stat == REMOVED && _keys[index] == key) { return true; } return false; } /** @return expanded or not */ protected boolean preAddEntry(int index) { if ((_used + 1) >= _threshold) {// filled enough int newCapacity = Math.round(_keys.length * _growFactor); ensureCapacity(newCapacity); return true; } return false; } protected int findKey(final int key) { final int[] keys = _keys; final byte[] states = _states; final int keyLength = keys.length; final int hash = keyHash(key); int keyIdx = hash % keyLength; if (states[keyIdx] != FREE) { if (states[keyIdx] == FULL && keys[keyIdx] == key) { return keyIdx; } // try second hash int decr = 1 + (hash % (keyLength - 2)); for (;;) { keyIdx -= decr; if (keyIdx < 0) { keyIdx += keyLength; } if (isFree(keyIdx, key)) { return -1; } if (states[keyIdx] == FULL && keys[keyIdx] == key) { return keyIdx; } } } return -1; } public V remove(final int key) { final int[] keys = _keys; final V[] values = _values; final byte[] states = _states; final int keyLength = keys.length; final int hash = keyHash(key); int keyIdx = hash % keyLength; if (states[keyIdx] != FREE) { if (states[keyIdx] == FULL && keys[keyIdx] == key) { V old = values[keyIdx]; states[keyIdx] = REMOVED; --_used; return old; } // second hash int decr = 1 + (hash % (keyLength - 2)); for (;;) { keyIdx -= decr; if (keyIdx < 0) { keyIdx += keyLength; } if (states[keyIdx] == FREE) { return null; } if (states[keyIdx] == FULL && keys[keyIdx] == key) { V old = values[keyIdx]; states[keyIdx] = REMOVED; --_used; return old; } } } return null; } public int size() { return _used; } public int capacity() { return _keys.length; } public void clear() { Arrays.fill(_states, FREE); this._used = 0; } protected void ensureCapacity(int newCapacity) { int prime = Primes.findLeastPrimeNumber(newCapacity); rehash(prime); this._threshold = Math.round(prime * _loadFactor); } @SuppressWarnings("unchecked") private void rehash(int newCapacity) { int oldCapacity = _keys.length; if (newCapacity <= oldCapacity) { throw new IllegalArgumentException("new: " + newCapacity + ", old: " + oldCapacity); } final int[] newkeys = new int[newCapacity]; final V[] newValues = (V[]) new Object[newCapacity]; final byte[] newStates = new byte[newCapacity]; int used = 0; for (int i = 0; i < oldCapacity; i++) { if (_states[i] == FULL) { used++; int k = _keys[i]; V v = _values[i]; int hash = keyHash(k); int keyIdx = hash % newCapacity; if (newStates[keyIdx] == FULL) {// second hashing int decr = 1 + (hash % (newCapacity - 2)); while (newStates[keyIdx] != FREE) { keyIdx -= decr; if (keyIdx < 0) { keyIdx += newCapacity; } } } newStates[keyIdx] = FULL; newkeys[keyIdx] = k; newValues[keyIdx] = v; } } this._keys = newkeys; this._values = newValues; this._states = newStates; this._used = used; } private static int keyHash(final int key) { return key & 0x7fffffff; } @Override public void writeExternal(ObjectOutput out) throws IOException { out.writeFloat(_loadFactor); out.writeFloat(_growFactor); out.writeInt(_used); final int size = _keys.length; out.writeInt(size); for (int i = 0; i < size; i++) { out.writeInt(_keys[i]); out.writeObject(_values[i]); out.writeByte(_states[i]); } } @SuppressWarnings("unchecked") @Override public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { this._loadFactor = in.readFloat(); this._growFactor = in.readFloat(); this._used = in.readInt(); final int size = in.readInt(); final int[] keys = new int[size]; final Object[] values = new Object[size]; final byte[] states = new byte[size]; for (int i = 0; i < size; i++) { keys[i] = in.readInt(); values[i] = in.readObject(); states[i] = in.readByte(); } this._threshold = size; this._keys = keys; this._values = (V[]) values; this._states = states; } }