/* Copyright 2006 Jerry Huxtable Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /* * This file was semi-automatically converted from the public-domain USGS PROJ source. */ package com.jhlabs.map.proj; import java.awt.geom.*; import com.jhlabs.map.*; public class SimpleConicProjection extends ConicProjection { private double n; private double rho_c; private double rho_0; private double sig; private double c1, c2; private int type; public final static int EULER = 0; public final static int MURD1 = 1; public final static int MURD2 = 2; public final static int MURD3 = 3; public final static int PCONIC = 4; public final static int TISSOT = 5; public final static int VITK1 = 6; private final static double EPS10 = 1.e-10; private final static double EPS = 1e-10; public SimpleConicProjection() { this( EULER ); } public SimpleConicProjection(int type) { this.type = type; minLatitude = Math.toRadians(0); maxLatitude = Math.toRadians(80); } public String toString() { return "Simple Conic"; } public Point2D.Double project(double lplam, double lpphi, Point2D.Double out) { double rho; switch (type) { case MURD2: rho = rho_c + Math.tan(sig - lpphi); break; case PCONIC: rho = c2 * (c1 - Math.tan(lpphi)); break; default: rho = rho_c - lpphi; break; } out.x = rho * Math.sin( lplam *= n ); out.y = rho_0 - rho * Math.cos(lplam); return out; } public Point2D.Double projectInverse(double xyx, double xyy, Point2D.Double out) { double rho; rho = MapMath.distance(xyx, out.y = rho_0 - xyy); if (n < 0.) { rho = - rho; out.x = - xyx; out.y = - xyy; } out.x = Math.atan2(xyx, xyy) / n; switch (type) { case PCONIC: out.y = Math.atan(c1 - rho / c2) + sig; break; case MURD2: out.y = sig - Math.atan(rho - rho_c); break; default: out.y = rho_c - rho; } return out; } public boolean hasInverse() { return true; } public void initialize() { super.initialize(); double del, cs, dummy; /* get common factors for simple conics */ double p1, p2, d, s; int err = 0; /*FIXME if (!pj_param(params, "tlat_1").i || !pj_param(params, "tlat_2").i) { err = -41; } else { p1 = pj_param(params, "rlat_1").f; p2 = pj_param(params, "rlat_2").f; *del = 0.5 * (p2 - p1); sig = 0.5 * (p2 + p1); err = (Math.abs(*del) < EPS || Math.abs(sig) < EPS) ? -42 : 0; *del = *del; } */ p1 = Math.toRadians(30);//FIXME p2 = Math.toRadians(60);//FIXME del = 0.5 * (p2 - p1); sig = 0.5 * (p2 + p1); err = (Math.abs(del) < EPS || Math.abs(sig) < EPS) ? -42 : 0; del = del; if (err != 0) throw new ProjectionException("Error "+err); switch (type) { case TISSOT: n = Math.sin(sig); cs = Math.cos(del); rho_c = n / cs + cs / n; rho_0 = Math.sqrt((rho_c - 2 * Math.sin(projectionLatitude))/n); break; case MURD1: rho_c = Math.sin(del)/(del * Math.tan(sig)) + sig; rho_0 = rho_c - projectionLatitude; n = Math.sin(sig); break; case MURD2: rho_c = (cs = Math.sqrt(Math.cos(del))) / Math.tan(sig); rho_0 = rho_c + Math.tan(sig - projectionLatitude); n = Math.sin(sig) * cs; break; case MURD3: rho_c = del / (Math.tan(sig) * Math.tan(del)) + sig; rho_0 = rho_c - projectionLatitude; n = Math.sin(sig) * Math.sin(del) * Math.tan(del) / (del * del); break; case EULER: n = Math.sin(sig) * Math.sin(del) / del; del *= 0.5; rho_c = del / (Math.tan(del) * Math.tan(sig)) + sig; rho_0 = rho_c - projectionLatitude; break; case PCONIC: n = Math.sin(sig); c2 = Math.cos(del); c1 = 1./Math.tan(sig); if (Math.abs(del = projectionLatitude - sig) - EPS10 >= MapMath.HALFPI) throw new ProjectionException("-43"); rho_0 = c2 * (c1 - Math.tan(del)); maxLatitude = Math.toRadians(60);//FIXME break; case VITK1: n = (cs = Math.tan(del)) * Math.sin(sig) / del; rho_c = del / (cs * Math.tan(sig)) + sig; rho_0 = rho_c - projectionLatitude; break; } } }