/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ package org.mozilla.gecko.sync.jpake; import java.io.UnsupportedEncodingException; import java.math.BigInteger; import java.security.GeneralSecurityException; import java.security.InvalidKeyException; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import javax.crypto.Mac; import javax.crypto.spec.SecretKeySpec; import org.mozilla.gecko.sync.Logger; import org.mozilla.gecko.sync.crypto.HKDF; import org.mozilla.gecko.sync.crypto.KeyBundle; public class JPakeCrypto { private static final String LOG_TAG = "JPakeCrypto"; /* * Primes P and Q, and generator G - from original Mozilla J-PAKE * implementation. */ public static final BigInteger P = new BigInteger( "90066455B5CFC38F9CAA4A48B4281F292C260FEEF01FD61037E56258A7795A1C" + "7AD46076982CE6BB956936C6AB4DCFE05E6784586940CA544B9B2140E1EB523F" + "009D20A7E7880E4E5BFA690F1B9004A27811CD9904AF70420EEFD6EA11EF7DA1" + "29F58835FF56B89FAA637BC9AC2EFAAB903402229F491D8D3485261CD068699B" + "6BA58A1DDBBEF6DB51E8FE34E8A78E542D7BA351C21EA8D8F1D29F5D5D159394" + "87E27F4416B0CA632C59EFD1B1EB66511A5A0FBF615B766C5862D0BD8A3FE7A0" + "E0DA0FB2FE1FCB19E8F9996A8EA0FCCDE538175238FC8B0EE6F29AF7F642773E" + "BE8CD5402415A01451A840476B2FCEB0E388D30D4B376C37FE401C2A2C2F941D" + "AD179C540C1C8CE030D460C4D983BE9AB0B20F69144C1AE13F9383EA1C08504F" + "B0BF321503EFE43488310DD8DC77EC5B8349B8BFE97C2C560EA878DE87C11E3D" + "597F1FEA742D73EEC7F37BE43949EF1A0D15C3F3E3FC0A8335617055AC91328E" + "C22B50FC15B941D3D1624CD88BC25F3E941FDDC6200689581BFEC416B4B2CB73", 16); public static final BigInteger Q = new BigInteger( "CFA0478A54717B08CE64805B76E5B14249A77A4838469DF7F7DC987EFCCFB11D", 16); public static final BigInteger G = new BigInteger( "5E5CBA992E0A680D885EB903AEA78E4A45A469103D448EDE3B7ACCC54D521E37" + "F84A4BDD5B06B0970CC2D2BBB715F7B82846F9A0C393914C792E6A923E2117AB" + "805276A975AADB5261D91673EA9AAFFEECBFA6183DFCB5D3B7332AA19275AFA1" + "F8EC0B60FB6F66CC23AE4870791D5982AAD1AA9485FD8F4A60126FEB2CF05DB8" + "A7F0F09B3397F3937F2E90B9E5B9C9B6EFEF642BC48351C46FB171B9BFA9EF17" + "A961CE96C7E7A7CC3D3D03DFAD1078BA21DA425198F07D2481622BCE45969D9C" + "4D6063D72AB7A0F08B2F49A7CC6AF335E08C4720E31476B67299E231F8BD90B3" + "9AC3AE3BE0C6B6CACEF8289A2E2873D58E51E029CAFBD55E6841489AB66B5B4B" + "9BA6E2F784660896AFF387D92844CCB8B69475496DE19DA2E58259B090489AC8" + "E62363CDF82CFD8EF2A427ABCD65750B506F56DDE3B988567A88126B914D7828" + "E2B63A6D7ED0747EC59E0E0A23CE7D8A74C1D2C2A7AFB6A29799620F00E11C33" + "787F7DED3B30E1A22D09F1FBDA1ABBBFBF25CAE05A13F812E34563F99410E73B", 16); /** * * Round 1 of J-PAKE protocol. * Generate x1, x2, and ZKP for other party. */ public static void round1(JPakeParty jp, JPakeNumGenerator gen) throws NoSuchAlgorithmException, UnsupportedEncodingException { // Randomly select x1 from [0,q), x2 from [1,q). BigInteger x1 = gen.generateFromRange(Q); // [0, q) BigInteger x2 = jp.x2 = BigInteger.ONE.add(gen.generateFromRange(Q .subtract(BigInteger.ONE))); // [1, q) BigInteger gx1 = G.modPow(x1, P); BigInteger gx2 = G.modPow(x2, P); jp.gx1 = gx1; jp.gx2 = gx2; // Generate and store zero knowledge proofs. jp.zkp1 = createZkp(G, x1, gx1, jp.signerId, gen); jp.zkp2 = createZkp(G, x2, gx2, jp.signerId, gen); } /** * Round 2 of J-PAKE protocol. * Generate A and ZKP for A. * Verify ZKP from other party. Does not check for replay ZKP. */ public static void round2(BigInteger secretValue, JPakeParty jp, JPakeNumGenerator gen) throws IncorrectZkpException, NoSuchAlgorithmException, Gx3OrGx4IsZeroOrOneException, UnsupportedEncodingException { Logger.debug(LOG_TAG, "round2 started."); // checkZkp does some additional checks, but we can throw a more informative exception here. if (BigInteger.ZERO.compareTo(jp.gx3) == 0 || BigInteger.ONE.compareTo(jp.gx3) == 0 || BigInteger.ZERO.compareTo(jp.gx4) == 0 || BigInteger.ONE.compareTo(jp.gx4) == 0) { throw new Gx3OrGx4IsZeroOrOneException(); } // Check ZKP. checkZkp(G, jp.gx3, jp.zkp3); checkZkp(G, jp.gx4, jp.zkp4); // Compute a = g^[(x1+x3+x4)*(x2*secret)]. BigInteger y1 = jp.gx3.multiply(jp.gx4).mod(P).multiply(jp.gx1).mod(P); BigInteger y2 = jp.x2.multiply(secretValue).mod(P); BigInteger a = y1.modPow(y2, P); jp.thisZkpA = createZkp(y1, y2, a, jp.signerId, gen); jp.thisA = a; Logger.debug(LOG_TAG, "round2 finished."); } /** * Final round of J-PAKE protocol. */ public static KeyBundle finalRound(BigInteger secretValue, JPakeParty jp) throws IncorrectZkpException, NoSuchAlgorithmException, InvalidKeyException, UnsupportedEncodingException { Logger.debug(LOG_TAG, "Final round started."); BigInteger gb = jp.gx1.multiply(jp.gx2).mod(P).multiply(jp.gx3) .mod(P); checkZkp(gb, jp.otherA, jp.otherZkpA); // Calculate shared key g^(x1+x3)*x2*x4*secret, which is equivalent to // (B/g^(x2*x4*s))^x2 = (B*(g^x4)^x2^s^-1)^2. BigInteger k = jp.gx4.modPow(jp.x2.multiply(secretValue).negate().mod(Q), P).multiply(jp.otherA) .modPow(jp.x2, P); byte[] enc = new byte[32]; byte[] hmac = new byte[32]; generateKeyAndHmac(k, enc, hmac); Logger.debug(LOG_TAG, "Final round finished; returning key."); return new KeyBundle(enc, hmac); } // TODO Replace this function with the one in the crypto library private static byte[] HMACSHA256(byte[] data, byte[] key) { byte[] result = null; try { Mac hmacSha256; hmacSha256 = Mac.getInstance("HmacSHA256"); SecretKeySpec secret_key = new SecretKeySpec(key, "HmacSHA256"); hmacSha256.init(secret_key); result = hmacSha256.doFinal(data); } catch (GeneralSecurityException e) { Logger.error(LOG_TAG, "Got exception calculating HMAC.", e); } return result; } /* Helper Methods */ /* * Generate the ZKP b = r - x*h, and g^r, where h = hash(g, g^r, g^x, id). (We * pass in gx to save on an exponentiation of g^x) */ private static Zkp createZkp(BigInteger g, BigInteger x, BigInteger gx, String id, JPakeNumGenerator gen) throws NoSuchAlgorithmException, UnsupportedEncodingException { // Generate random r for exponent. BigInteger r = gen.generateFromRange(Q); // Calculate g^r for ZKP. BigInteger gr = g.modPow(r, P); // Calculate the ZKP b value = (r-x*h) % q. BigInteger h = computeBHash(g, gr, gx, id); Logger.debug(LOG_TAG, "myhash: " + h.toString(16)); // ZKP value = b = r-x*h BigInteger b = r.subtract(x.multiply(h)).mod(Q); return new Zkp(gr, b, id); } /* * Verify ZKP. */ private static void checkZkp(BigInteger g, BigInteger gx, Zkp zkp) throws IncorrectZkpException, NoSuchAlgorithmException, UnsupportedEncodingException { BigInteger h = computeBHash(g, zkp.gr, gx, zkp.id); // Check parameters of zkp, and compare to computed hash. These shouldn't // fail. if (gx.compareTo(BigInteger.ONE) < 1) { // g^x > 1. Logger.error(LOG_TAG, "g^x > 1 fails."); throw new IncorrectZkpException(); } if (gx.compareTo(P.subtract(BigInteger.ONE)) > -1) { // g^x < p-1 Logger.error(LOG_TAG, "g^x < p-1 fails."); throw new IncorrectZkpException(); } if (gx.modPow(Q, P).compareTo(BigInteger.ONE) != 0) { Logger.error(LOG_TAG, "g^x^q % p = 1 fails."); throw new IncorrectZkpException(); } if (zkp.gr.compareTo(g.modPow(zkp.b, P).multiply(gx.modPow(h, P)).mod(P)) != 0) { // b = r-h*x ==> g^r = g^b*g^x^(h) Logger.debug(LOG_TAG, "gb*g(xh) = " + g.modPow(zkp.b, P).multiply(gx.modPow(h, P)).mod(P).toString(16)); Logger.debug(LOG_TAG, "gr = " + zkp.gr.toString(16)); Logger.debug(LOG_TAG, "b = " + zkp.b.toString(16)); Logger.debug(LOG_TAG, "g^b = " + g.modPow(zkp.b, P).toString(16)); Logger.debug(LOG_TAG, "g^(xh) = " + gx.modPow(h, P).toString(16)); Logger.debug(LOG_TAG, "gx = " + gx.toString(16)); Logger.debug(LOG_TAG, "h = " + h.toString(16)); Logger.error(LOG_TAG, "zkp calculation incorrect."); throw new IncorrectZkpException(); } Logger.debug(LOG_TAG, "*** ZKP SUCCESS ***"); } /* * Use SHA-256 to compute a BigInteger hash of g, gr, gx values with * mySignerId to prevent replay. Does not make a twos-complement BigInteger * form hash. */ private static BigInteger computeBHash(BigInteger g, BigInteger gr, BigInteger gx, String id) throws NoSuchAlgorithmException, UnsupportedEncodingException { MessageDigest sha = MessageDigest.getInstance("SHA-256"); sha.reset(); /* * Note: you should ensure the items in H(...) have clear boundaries. It * is simple if the other party knows sizes of g, gr, gx and signerID and * hence the boundary is unambiguous. If not, you'd better prepend each * item with its byte length, but I've omitted that here. */ hashByteArrayWithLength(sha, BigIntegerHelper.BigIntegerToByteArrayWithoutSign(g)); hashByteArrayWithLength(sha, BigIntegerHelper.BigIntegerToByteArrayWithoutSign(gr)); hashByteArrayWithLength(sha, BigIntegerHelper.BigIntegerToByteArrayWithoutSign(gx)); hashByteArrayWithLength(sha, id.getBytes("UTF-8")); byte[] hash = sha.digest(); return BigIntegerHelper.ByteArrayToBigIntegerWithoutSign(hash); } /* * Update a hash with a byte array's length and the byte array. */ private static void hashByteArrayWithLength(MessageDigest sha, byte[] data) { int length = data.length; byte[] b = new byte[] { (byte) (length >>> 8), (byte) (length & 0xff) }; sha.update(b); sha.update(data); } /* * Helper function to generate encryption key and HMAC from a byte array. */ public static void generateKeyAndHmac(BigInteger k, byte[] encOut, byte[] hmacOut) throws NoSuchAlgorithmException, InvalidKeyException { // Generate HMAC and Encryption keys from synckey. byte[] zerokey = new byte[32]; byte[] prk = HMACSHA256(BigIntegerHelper.BigIntegerToByteArrayWithoutSign(k), zerokey); byte[] okm = HKDF.hkdfExpand(prk, HKDF.HMAC_INPUT, 32 * 2); System.arraycopy(okm, 0, encOut, 0, 32); System.arraycopy(okm, 32, hmacOut, 0, 32); } }